Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
N Biotechnol ; 82: 33-42, 2024 Sep 25.
Article En | MEDLINE | ID: mdl-38714292

Given the necessity for bioprocesses scaling-up, the present study aims to explore the potential of three marine cyanobacteria and a consortium, cultivated in semi-continuous mode, as a green approach for i) continuous exopolysaccharide-rich biomass production and ii) removal of positively charged metals (Cu, Ni, Zn) from mono and multi-metallic solutions. To ensure the effectiveness of both cellular and released exopolysaccharides, weekly harvested whole cultures were confined in dialysis tubings. The results revealed that all the tested cyanobacteria have a stronger affinity towards Cu in mono and three-metal systems. Despite the amount of metals removed per gram of biomass decreased with higher biosorbent dosage, the more soluble carbohydrates were produced, the greater was the metal uptake, underscoring the pivotal role of released exopolysaccharides in metal biosorption. According to this, Dactylococcopsis salina 16Som2 showed the highest carbohydrate productivity (142 mg L-1 d-1) and metal uptake (84 mg Cu g-1 biomass) representing a promising candidate for further studies. The semi-continuous cultivation of marine cyanobacteria here reported assures a schedulable production of exopolysaccharide-rich biosorbents with high metal removal and recovery potential, even from multi-metallic solutions, as a step forward in the industrial application of cyanobacteria.


Cyanobacteria , Cyanobacteria/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Biomass , Biotechnology , Metals/metabolism , Metals/chemistry , Green Chemistry Technology
2.
J Phycol ; 59(4): 791-797, 2023 08.
Article En | MEDLINE | ID: mdl-37399119

The phycosphere is a unique niche that fosters complex interactions between microalgae and associated bacteria. The formation of this extracellular environment, and the associated bacterial biodiversity, is heavily influenced by the secretion of extracellular polymers, primarily driven by phototrophic organisms. The exopolysaccharides (EPS) represent the largest fraction of the microalgae-derived exudates, which can be specifically used by heterotrophic bacteria as substrates for metabolic processes. Furthermore, it has been proposed that bacteria and their extracellular factors play a role in both the release and composition of the EPS. In this study, two model microorganisms, the diatom Phaeodactylum tricornutum CCAP 1055/15 and the bacterium Pseudoalteromonas haloplanktis TAC125, were co-cultured in a dual system to assess how their interactions modify the phycosphere chemical composition by analyzing the EPS monosaccharide profile released in the culture media by the two partners. We demonstrate that microalgal-bacterial interactions in this simplified model significantly influenced the architecture of their extracellular environment. We observed that the composition of the exo-environment, as described by the EPS monosaccharide profiles, varied under different culture conditions and times of incubation. This study reports an initial characterization of the molecular modifications occurring in the extracellular environment surrounding two relevant representatives of marine systems.


Diatoms , Diatoms/metabolism , Coculture Techniques , Bacteria/metabolism , Polymers
3.
mSystems ; 6(4): e0055021, 2021 Aug 31.
Article En | MEDLINE | ID: mdl-34313466

Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.

4.
Genome Biol Evol ; 12(12): 2521-2534, 2020 12 06.
Article En | MEDLINE | ID: mdl-33283865

Rhizobium-legume symbioses serve as paradigmatic examples for the study of mutualism evolution. The genus Ensifer (syn. Sinorhizobium) contains diverse plant-associated bacteria, a subset of which can fix nitrogen in symbiosis with legumes. To gain insights into the evolution of symbiotic nitrogen fixation (SNF), and interkingdom mutualisms more generally, we performed extensive phenotypic, genomic, and phylogenetic analyses of the genus Ensifer. The data suggest that SNF likely emerged several times within the genus Ensifer through independent horizontal gene transfer events. Yet, the majority (105 of 106) of the Ensifer strains with the nodABC and nifHDK nodulation and nitrogen fixation genes were found within a single, monophyletic clade. Comparative genomics highlighted several differences between the "symbiotic" and "nonsymbiotic" clades, including divergences in their pangenome content. Additionally, strains of the symbiotic clade carried 325 fewer genes, on average, and appeared to have fewer rRNA operons than strains of the nonsymbiotic clade. Initial characterization of a subset of ten Ensifer strains identified several putative phenotypic differences between the clades. Tested strains of the nonsymbiotic clade could catabolize 25% more carbon sources, on average, than strains of the symbiotic clade, and they were better able to grow in LB medium and tolerate alkaline conditions. On the other hand, the tested strains of the symbiotic clade were better able to tolerate heat stress and acidic conditions. We suggest that these data support the division of the genus Ensifer into two main subgroups, as well as the hypothesis that pre-existing genetic features are required to facilitate the evolution of SNF in bacteria.


Nitrogen Fixation/genetics , Phylogeny , Sinorhizobium/genetics , Fabaceae/microbiology , Gene Transfer, Horizontal , Genome, Bacterial , Genomics , Microarray Analysis , Sinorhizobium/classification , Symbiosis/genetics
5.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Article En | MEDLINE | ID: mdl-32068796

Global warming may shortly increase the risk of disease development on plants. Significant differences in the metabolic activity screened with Phenotype Microarray at 22°C and 28°C were observed between D. solani strains with high and low virulence level. Highly virulent D. solani was characterized by a higher number of metabolized compounds and a faster metabolism and was more tolerant to non-favorable pH and osmolarity. Metabolic phenotyping showed for the first time that the mutation in pecT gene, which encodes a global repressor of virulence, affects several pathways of the basic cell metabolism. PecT mutants had a higher maceration capacity of potato tissue and showed a higher pectinolytic activity than the wild-type strains. On the contrary, mutation in expI gene, which encoded the signaling molecules synthase crucial for quorum sensing, had an insignificant effect on the cell metabolism, although it slightly reduced the potato tissue maceration. The ability to utilize most of the tested compounds was higher at 28°C, while the survival at non-favorable pH and osmolarity was higher at 22°C. These results proved that the temperature of incubation had the most significant impact on the D. solani metabolic profiles.


Plant Diseases , Dickeya , Gammaproteobacteria , Mutation , Temperature , Virulence/genetics
6.
Microorganisms ; 7(12)2019 Nov 20.
Article En | MEDLINE | ID: mdl-31757055

Polylactic acid (PLA), a bioplastic synthesized from lactic acid, has a broad range of applications owing to its excellent proprieties such as a high melting point, good mechanical strength, transparency, and ease of fabrication. However, the safe disposal of PLA is an emerging environmental problem: it resists microbial attack in environmental conditions, and the frequency of PLA-degrading microorganisms in soil is very low. To date, a limited number of PLA-degrading bacteria have been isolated, and most are actinomycetes. In this work, a method for the selection of rare actinomycetes with extracellular proteolytic activity was established, and the technique was used to isolate four mesophilic actinomycetes with the ability to degrade emulsified PLA in agar plates. All four strains-designated SO1.1, SO1.2, SNC, and SST-belong to the genus Amycolatopsis. The PLA-degrading capability of the four strains was investigated by testing their ability to assimilate lactic acid, fragment PLA polymers, and deteriorate PLA films. The strain SNC was the best PLA degrader-it was able to assimilate lactic acid, constitutively cleave PLA, and form a thick and widespread biofilm on PLA film. The activity of this strain extensively eroded the polymer, leading to a weight loss of 36% in one month in mesophilic conditions.

7.
Microorganisms ; 7(4)2019 Apr 05.
Article En | MEDLINE | ID: mdl-30959803

Understanding plant⁻microbe interactions is crucial for improving plants' productivity and protection. Constraint-based metabolic modeling is one of the possible ways to investigate the bacterial adaptation to different ecological niches and may give insights into the metabolic versatility of plant pathogenic bacteria. We reconstructed a raw metabolic model of the emerging plant pathogenic bacterium Pectobacterium parmentieri SCC3193 with the use of KBase. The model was curated by using inParanoind and phenotypic data generated with the use of the OmniLog system. Metabolic modeling was performed through COBRApy Toolbox v. 0.10.1. The curated metabolic model of P. parmentieri SCC3193 is highly reliable, as in silico obtained results overlapped up to 91% with experimental data on carbon utilization phenotypes. By mean of flux balance analysis (FBA), we predicted the metabolic adaptation of P. parmentieri SCC3193 to two different ecological niches, relevant for the persistence and plant colonization by this bacterium: soil and the rhizosphere. We performed in silico gene deletions to predict the set of essential core genes for this bacterium to grow in such environments. We anticipate that our metabolic model will be a valuable element for defining a set of metabolic targets to control infection and spreading of this plant pathogen.

8.
ACS Synth Biol ; 7(10): 2365-2378, 2018 10 19.
Article En | MEDLINE | ID: mdl-30223644

Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.


Nitrogen/metabolism , Sinorhizobium meliloti/metabolism , Symbiosis , Escherichia coli/genetics , Escherichia coli/metabolism , Genome, Bacterial , Magnetic Resonance Spectroscopy , Medicago/microbiology , Metabolic Engineering/methods , Plant Roots/microbiology , Plasmids/genetics , Plasmids/metabolism , Principal Component Analysis , Sinorhizobium meliloti/genetics
9.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Article En | MEDLINE | ID: mdl-29912319

A key factor in the study of plant-microbes interactions is the composition of plant microbiota, but little is known about the factors determining its functional and taxonomic organization. Here we investigated the possible forces driving the assemblage of bacterial endophytic and rhizospheric communities, isolated from two congeneric medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC) Heller, grown in the same soil, by analysing bacterial strains (isolated from three different compartments, i.e. rhizospheric soil, roots and stem/leaves) for phenotypic features such as antibiotic resistance, extracellular enzymatic activity, siderophore and indole 3-acetic acid production, as well as cross-antagonistic activities. Data obtained highlighted that bacteria from different plant compartments were characterized by specific antibiotic resistance phenotypes and antibiotic production, suggesting that the bacterial communities themselves could be responsible for structuring their own communities by the production of antimicrobial molecules selecting bacterial-adaptive phenotypes for plant tissue colonization.


Anti-Bacterial Agents/metabolism , Antibiosis/physiology , Bacteria/growth & development , Echinacea/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , Plant Stems/microbiology , Rhizosphere , Bacteria/drug effects , Bacteria/genetics , Drug Resistance, Microbial , Indoleacetic Acids/metabolism , Microbiota/drug effects , Soil , Soil Microbiology , Species Specificity
10.
Sci Rep ; 8(1): 8455, 2018 05 31.
Article En | MEDLINE | ID: mdl-29855510

Olive oil pomace (OOP) is a bio-waste rich in highly soluble polyphenols. OOP has been proposed as an additive in ruminant feeding to modulate rumen fermentations. Three groups of ewes were fed the following different diets: a control diet and two diets supplemented with OOP, obtained with a two-phase (OOP2) or three-phase (OOP3) olive milling process. Rumen liquor (RL) showed a higher content of 18:3 cis9 cis12 cis15 (α-linolenic acid, α-LNA) with OOP2 inclusion, and of 18:2 cis9 trans11 (rumenic acid, RA) with OOP3 inclusion. The overall composition of the RL microbiota did not differ among treatments. Significant differences, between control and treated groups, were found for six bacterial taxa. In particular, RL microbiota from animals fed OOPs showed a reduction in Anaerovibrio, a lipase-producing bacterium. The decrease in the Anaerovibrio genus may lead to a reduction in lipolysis, thus lowering the amount of polyunsaturated fatty acids available for biohydrogenation. Milk from animals fed OOP showed a higher content of 18:1 cis9 (oleic acid, OA) but the α-LNA concentration was increased in milk from animals treated with OOP2 only. Therefore, inclusion of OOP in ruminant diets may be a tool to ameliorate the nutritional characteristics of milk.


Diet , Olive Oil/chemistry , Rumen/microbiology , Acetals/analysis , Animals , Bacteria/isolation & purification , Chromatography, Gas , Fatty Acids/analysis , Microbiota/drug effects , Milk/chemistry , Milk/metabolism , Oleic Acid/metabolism , Olive Oil/metabolism , Polyphenols/pharmacology , Sheep , alpha-Linolenic Acid/metabolism
11.
Res Microbiol ; 167(9-10): 774-787, 2016.
Article En | MEDLINE | ID: mdl-27637152

The plant pathogenic bacterium Pseudomonas savastanoi, the causal agent of olive and oleander knot disease, uses the so-called "indole-3-acetamide pathway" to convert tryptophan to indole-3-acetic acid (IAA) via a two-step pathway catalyzed by enzymes encoded by the genes in the iaaM/iaaH operon. Moreover, pathovar nerii of P. savastanoi is able to conjugate IAA to lysine to generate the less biologically active compound IAA-Lys via the enzyme IAA-lysine synthase encoded by the iaaL gene. Interestingly, iaaL is now known to be widespread in many Pseudomonas syringae pathovars, even in the absence of the iaaM and iaaH genes for IAA biosynthesis. Here, two knockout mutants, ΔiaaL and ΔiaaM, of strain Psn23 of P. savastanoi pv. nerii were produced. Pathogenicity tests using the host plant Nerium oleander showed that ΔiaaL and ΔiaaM were hypervirulent and hypovirulent, respectively and these features appeared to be related to their differential production of free IAA. Using the Phenotype Microarray approach, the chemical sensitivity of these mutants was shown to be comparable to that of wild-type Psn23. The main exception was 8 hydroxyquinoline, a toxic compound that is naturally present in plant exudates and is used as a biocide, which severely impaired the growth of ΔiaaL and ΔiaaM, as well as growth of the non-pathogenic mutant ΔhrpA, which lacks a functional Type Three Secretion System (TTSS). According to bioinformatics analysis of the Psn23 genome, a gene encoding a putative Multidrug and Toxic compound Extrusion (MATE) transporter, was found upstream of iaaL. Similarly to iaaL and iaaM, its expression appeared to be TTSS-dependent. Moreover, auxin-responsive elements were identified for the first time in the modular promoters of both the iaaL gene and the iaaM/iaaH operon of P. savastanoi, suggesting their IAA-inducible transcription. Gene expression analysis of several genes related to TTSS, IAA metabolism and drug resistance confirmed the presence of a concerted regulatory network in this phytopathogen among virulence, fitness and drug efflux.


Host-Pathogen Interactions , Indoleacetic Acids/metabolism , Nerium/microbiology , Plant Growth Regulators/metabolism , Pseudomonas/metabolism , Gene Deletion , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Metabolic Networks and Pathways/genetics , Plant Diseases/microbiology , Pseudomonas/genetics , Transcription, Genetic , Virulence
12.
Res Microbiol ; 167(9-10): 757-765, 2016.
Article En | MEDLINE | ID: mdl-27639669

Research on biotechnology applications for cultural heritage restoration has shown how microorganisms can be efficient at cleaning particularly complex or ingrained substances through the process called "biocleaning". Bacteria are able to synthesize groups of specific enzymes for the degradation of complex materials present on artwork. Biocleaning has been shown to be less hazardous than some traditional mechanical or chemical techniques for the artwork, to be environmentally-friendly and safe for restorers to use. In order to improve our knowledge of the metabolic mechanisms involved in biocleaning, we analyzed the relationship between the genome and phenome of Pseudomonas stutzeri 5190 in order to identify and confirm the benefits and drawbacks of this bacterium used on on-site artwork as a biocleaning agent. Main phenotype microarray (PM) assays showed that P. stutzeri 5190 was able to use: i) 51 of the 190 carbon sources tested, where 32 were used efficiently, among which there were six amino acids (l-proline, l-alanine, d-alanine, l-glutamic acid, l-asparagine and l-glutamine); ii) 74 of the 95 nitrogen sources tested, where 50 compounds were used efficiently, among which were 28 amino acids and the inorganic nitrate and nitrite compounds, supporting the hypothesis of the strain's ability to remove nitrate salt efflorescence from frescoes. Furthermore, high tolerance to osmotic stress, to basic pH and to toxic compounds was revealed by PM. Putative genes compatible with these phenotypes are described.


Environmental Pollutants/metabolism , Genotype , Microarray Analysis , Phenotype , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/metabolism , Biotransformation , Carbon/metabolism , Drug Tolerance , Hydrogen-Ion Concentration , Nitrogen/metabolism
13.
Sci Rep ; 6: 21985, 2016 Feb 23.
Article En | MEDLINE | ID: mdl-26902269

Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1(T), LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant.


Acinetobacter/genetics , Alkanes/metabolism , DNA, Bacterial/genetics , Genome, Bacterial , Petroleum/metabolism , Acinetobacter/classification , Acinetobacter/metabolism , Biodegradation, Environmental , Genome Size , Hydrolysis , Microarray Analysis , Multigene Family , Operon , Phenotype , Phylogeny , Sequence Analysis, DNA
14.
PLoS One ; 10(10): e0139467, 2015.
Article En | MEDLINE | ID: mdl-26426997

In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, including BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, by using Biolog plates and plates manually prepared with additional xenobiotic compounds. Around one-third of the surveyed carbon sources was utilized by both strains although R7 generally showed higher metabolic activity values compared to BCP1. Moreover, R7 showed broader range of nitrogen and sulphur sources. Phenotype Microarray data were combined with genomic analysis to genetically support the metabolic features of the two strains. The genome analysis allowed to identify some gene clusters involved in the metabolism of the main tested xenobiotic compounds. Results show that R7 contains multiple genes for the degradation of a large set of aromatic and PAHs compounds, while a lower variability in terms of genes predicted to be involved in aromatic degradation was found in BCP1. This genetic feature can be related to the strong genetic pressure exerted by the two different environment from which the two strains were isolated. According to this, in the BCP1 genome the smo gene cluster involved in the short-chain n-alkanes degradation, is included in one of the unique regions and it is not conserved in the Rhodococcus strains compared in this work. Data obtained underline the great potential of these two Rhodococcus spp. strains for biodegradation and environmental decontamination processes.


Bacterial Proteins/metabolism , Biodegradation, Environmental/drug effects , Gene Expression Regulation, Bacterial/drug effects , High-Throughput Nucleotide Sequencing/methods , Metabolic Networks and Pathways/genetics , Rhodococcus/genetics , Rhodococcus/metabolism , Bacterial Proteins/genetics , Genomics/methods , Phenotype , Phylogeny , Rhodococcus/growth & development , Sequence Analysis, DNA/methods , Xenobiotics/pharmacology
15.
PLoS One ; 10(7): e0132816, 2015.
Article En | MEDLINE | ID: mdl-26201074

Biocides are used without restriction for several purposes. As a consequence, large amounts of biocides are released without any control in the environment, a situation that can challenge the microbial population dynamics, including selection of antibiotic resistant bacteria. Previous work has shown that triclosan selects Stenotrophomonas maltophilia antibiotic resistant mutants overexpressing the efflux pump SmeDEF and induces expression of this pump triggering transient low-level resistance. In the present work we analyze if two other common biocides, benzalkonium chloride and hexachlorophene, trigger antibiotic resistance in S. maltophilia. Bioinformatic and biochemical methods showed that benzalkonium chloride and hexachlorophene bind the repressor of smeDEF, SmeT. Only benzalkonium chloride triggers expression of smeD and its effect in transient antibiotic resistance is minor. None of the hexachlorophene-selected mutants was antibiotic resistant. Two benzalkonium chloride resistant mutants presented reduced susceptibility to antibiotics and were impaired in growth. Metabolic profiling showed they were more proficient than their parental strain in the use of some dipeptides. We can then conclude that although bioinformatic predictions and biochemical studies suggest that both hexachlorophene and benzalkonium chloride should induce smeDEF expression leading to transient S. maltophilia resistance to antibiotics, phenotypic assays showed this not to be true. The facts that hexachlorophene resistant mutants are not antibiotic resistant and that the benzalkonium chloride resistant mutants presenting altered susceptibility to antibiotics were impaired in growth suggests that the risk for the selection (and fixation) of S. maltophilia antibiotic resistant mutants by these biocides is likely low, at least in the absence of constant selection pressure.


Bacterial Proteins/metabolism , Disinfectants/pharmacology , Drug Resistance, Bacterial , Stenotrophomonas maltophilia/growth & development , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benzalkonium Compounds/pharmacology , Computational Biology/methods , Drug Resistance, Bacterial/drug effects , Hexachlorophene/pharmacology , Models, Molecular , Molecular Docking Simulation , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/enzymology
16.
Methods Mol Biol ; 1231: 99-123, 2015.
Article En | MEDLINE | ID: mdl-25343861

Standard protocols are available in order to apply Phenotype MicroArray (PM) technology to characterize different groups of microorganisms. Nevertheless, there is the need to pay attention to several crucial steps in order to obtain high-quality and reproducible data from PM, such as the choice of the Dye mix, the type and concentration of the carbon source in metabolic experiments, the use of a buffered medium. A systematic research of auxotrophies in strains to be tested should be carefully evaluated before starting with PM experiments. Detailed protocols to obtain defined and reproducible phenotypic profiles for bacteria and yeasts are shown. Moreover, the innovative software opm R packages and DuctApe suite for the analysis of kinetic data produced by PM and panphenome description are reported.


Bacteria/metabolism , Fungi/metabolism , High-Throughput Screening Assays/instrumentation , Microarray Analysis , Phenotype , Software , Carbon/metabolism , Culture Media/chemistry , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Metabolic Networks and Pathways , Microbial Sensitivity Tests/instrumentation , Nephelometry and Turbidimetry , Nitrogen/metabolism , Phosphorus/metabolism , Sulfur/metabolism
17.
PLoS One ; 9(11): e112141, 2014.
Article En | MEDLINE | ID: mdl-25369456

Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].


Biofilms , Histidine/pharmacology , Saccharomyces cerevisiae/physiology , Cell Wall/metabolism , Cluster Analysis , Histidine/metabolism , Hydrogen-Ion Concentration , Membrane Glycoproteins/physiology , Metabolic Networks and Pathways , Microbial Viability/drug effects , Phenotype , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/physiology
18.
FEMS Microbiol Lett ; 355(1): 61-70, 2014 Jun.
Article En | MEDLINE | ID: mdl-24766488

Efflux pumps are membrane proteins involved in the active extrusion of a wide range of structurally dissimilar substrates from cells. A multidrug efflux pump named TetA belonging to the major facilitator superfamily (MFS) of transporters was identified in the Streptococcus thermophilus DSM 20617(T) genome. The tetA-like gene was found in the genomes of a number of S. thermophilus strains sequenced to date and in Streptococcus macedonicus ACA-DC 198, suggesting a possible horizontal gene transfer event between these two Streptococcus species, which are both adapted to the milk environment. Flow cytometry (single-cell) analysis revealed bistable TetA activity in the S. thermophilus population, and tetA-like gene over-expression resulted in a reduced susceptibility to ethidium bromide, tetracycline, and other toxic compounds even when the efflux pump was over-expressed in a strain naturally lacking tetA-like gene.


Antiporters/genetics , Antiporters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Streptococcus thermophilus/enzymology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Drug Resistance , Ethidium/toxicity , Microbial Sensitivity Tests , Molecular Sequence Data , Sequence Analysis, DNA , Streptococcus thermophilus/drug effects , Streptococcus thermophilus/genetics , Tetracycline/toxicity
19.
FEMS Microbiol Rev ; 38(4): 633-59, 2014 Jul.
Article En | MEDLINE | ID: mdl-24188101

Hexavalent chromium [Cr(VI)] contamination is one of the main problems of environmental protection because the Cr(VI) is a hazard to human health. The Cr(VI) form is highly toxic, mutagenic, and carcinogenic, and it spreads widely beyond the site of initial contamination because of its mobility. Cr(VI), crossing the cellular membrane via the sulfate uptake pathway, generates active intermediates Cr(V) and/or Cr(IV), free radicals, and Cr(III) as the final product. Cr(III) affects DNA replication, causes mutagenesis, and alters the structure and activity of enzymes, reacting with their carboxyl and thiol groups. To persist in Cr(VI)-contaminated environments, microorganisms must have efficient systems to neutralize the negative effects of this form of chromium. The systems involve detoxification or repair strategies such as Cr(VI) efflux pumps, Cr(VI) reduction to Cr(III), and activation of enzymes involved in the ROS detoxifying processes, repair of DNA lesions, sulfur metabolism, and iron homeostasis. This review provides an overview of the processes involved in bacterial and fungal Cr(VI) resistance that have been identified through 'omics' studies. A comparative analysis of the described molecular mechanisms is offered and compared with the cellular evidences obtained using classical microbiological approaches.


Bacteria/drug effects , Chromium/toxicity , Drug Resistance, Bacterial/physiology , Fungi/drug effects , Amino Acids/metabolism , Bacteria/genetics , Bacteria/metabolism , Chromium/metabolism , DNA, Bacterial/metabolism , Drug Resistance, Bacterial/genetics , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Fungi/genetics , Fungi/metabolism , Iron/metabolism , Sulfur/metabolism
20.
Genome Announc ; 1(1)2013 Jan.
Article En | MEDLINE | ID: mdl-23469336

We report the draft genome sequence of Pseudomonas alcaliphila 34, a Cr(VI)-hyperresistant and biofilm-producing bacterium that might be used for the bioremediation of chromate-polluted soils. The genome sequence might be helpful in exploring the mechanisms involved in chromium resistance and biofilm formation.

...