Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Total Environ ; 838(Pt 1): 155939, 2022 Sep 10.
Article En | MEDLINE | ID: mdl-35577092

With the booming development of information technology and the growing demand for remote sensing data, unmanned aerial vehicle (UAV) remote sensing technology has emerged. In recent years, UAV remote sensing technology has developed rapidly and has been widely used in the fields of military defense, agricultural monitoring, surveying and mapping management, and disaster and emergency response and management. Currently, increasingly serious marine biological and environmental problems are raising the need for effective and timely monitoring. Compared with traditional marine monitoring technologies, UAV remote sensing is becoming an important means for marine monitoring thanks to its flexibility, efficiency and low cost, while still producing systematic data with high spatial and temporal resolutions. This study visualizes the knowledge domain of the application and research advances of UAV remote sensing in marine monitoring by analyzing 1130 articles (from 1993 to early 2022) using a bibliometric approach and provides a review of the application of UAVs in marine management mapping, marine disaster and environmental monitoring, and marine wildlife monitoring. It aims to promote the extensive application of UAV remote sensing in the field of marine research.


Agriculture , Remote Sensing Technology , Animals , Animals, Wild , Environmental Monitoring
2.
Water Res ; 219: 118551, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35561617

Aquaculture provides livelihoods for hundreds of millions of people, but it also forms a significant source of plastic litter that poses a serious hazard to aquatic ecosystems. How to assess and subsequently manage plastic loads from aquaculture is a pending and pressing issue for aquaculture sustainability, and an important concern for water environment monitoring and management. In this study, we developed the first framework for estimating plastic litter from aquaculture by combining data from satellite remote sensing, drones, questionnaires, and in situ measurements. By acquiring multidimensional (human and nature) and multiscale (centimeter to basin scale) data, this framework helped us understand the aquaculture farming patterns and its spatial and temporal evolution, and thus estimate the plastic load it generates and suggest effective management approaches. Applying this framework, we assessed the marine plastic load from oyster floating raft farming in the Maowei Sea, a typical mariculture bay in China, with an increasing farming area. Approximately 3840 tons of plastic waste is expected to be discharged into the sea in the next four years (the average service life of a floating raft) without improvements in aquaculture waste management. Strengthening governance, timely plastic removal, innovative replacement, and transforming farmers' behavior patterns are recommended as the subsequent measures for plastic management. This framework can be extended to other regions and other aquaculture patterns, and is applicable to local, regional, and global aquaculture plastic litter assessments. It is a source-based method for evaluating plastic pollution that is more conducive to subsequent plastic management than traditional post-contamination environmental monitoring. In the context of the global expansion of mariculture and the global commitment to action to combat plastic pollution, this approach could play a critical role in the investigation and management of plastic waste in aquatic environments.


Plastics , Water Pollutants, Chemical , Aquaculture , Ecosystem , Environmental Monitoring , Environmental Pollution , Humans , Water Pollutants, Chemical/analysis
3.
Glob Chang Biol ; 27(21): 5514-5531, 2021 11.
Article En | MEDLINE | ID: mdl-34486773

Marine spatial planning that addresses ocean climate-driven change ('climate-smart MSP') is a global aspiration to support economic growth, food security and ecosystem sustainability. Ocean climate change ('CC') modelling may become a key decision-support tool for MSP, but traditional modelling analysis and communication challenges prevent their broad uptake. We employed MSP-specific ocean climate modelling analyses to inform a real-life MSP process; addressing how nature conservation and fisheries could be adapted to CC. We found that the currently planned distribution of these activities may become unsustainable during the policy's implementation due to CC, leading to a shortfall in its sustainability and blue growth targets. Significant, climate-driven ecosystem-level shifts in ocean components underpinning designated sites and fishing activity were estimated, reflecting different magnitudes of shifts in benthic versus pelagic, and inshore versus offshore habitats. Supporting adaptation, we then identified: CC refugia (areas where the ecosystem remains within the boundaries of its present state); CC hotspots (where climate drives the ecosystem towards a new state, inconsistent with each sectors' present use distribution); and for the first time, identified bright spots (areas where oceanographic processes drive range expansion opportunities that may support sustainable growth in the medium term). We thus create the means to: identify where sector-relevant ecosystem change is attributable to CC; incorporate resilient delivery of conservation and sustainable ecosystem management aims into MSP; and to harness opportunities for blue growth where they exist. Capturing CC bright spots alongside refugia within protected areas may present important opportunities to meet sustainability targets while helping support the fishing sector in a changing climate. By capitalizing on the natural distribution of climate resilience within ocean ecosystems, such climate-adaptive spatial management strategies could be seen as nature-based solutions to limit the impact of CC on ocean ecosystems and dependent blue economy sectors, paving the way for climate-smart MSP.


Climate Change , Ecosystem , Adaptation, Physiological , Conservation of Natural Resources , Fisheries , Oceanography
4.
PLoS One ; 13(4): e0195221, 2018.
Article En | MEDLINE | ID: mdl-29649261

Estuaries function as important nursery and foraging habitats for many coastal species, including highly migratory sharks. Pamlico Sound, North Carolina, is one of the largest estuaries in the continental United States and provides a variety of potential habitats for sharks. In order to identify and spatially delineate shark habitats within Pamlico Sound, shark catch and environmental data were analyzed from the 2007-2014 North Carolina Division of Marine Fisheries (NCDMF) gillnet and longline surveys conducted within the estuary. Principal species were identified and environmental data recorded at survey sites (depth, temperature, salinity, dissolved oxygen, submerged aquatic vegetation (SAV) distance, and inlet distance) were interpolated across Pamlico Sound to create seasonal environmental grids with a 90-m2 cell size. Boosted Regression Tree (BRT) analysis was used to identify the most important environmental factors and ranges associated with presence of each principal species, and the resulting models were used to predict shark capture probability based on the environmental values within the grid cells. The Atlantic Sharpnose Shark (Rhizoprionodon terraenovae), Blacktip Shark (Carcharhinus limbatus), Bull Shark (Carcharhinus leucas), Sandbar Shark (Carcharhinus plumbeus), Smooth Dogfish (Mustelus canis), and Spiny Dogfish (Squalus acanthias) were the principal species in Pamlico Sound. Most species were associated with proximity to the inlet and/or high salinity, and warm temperatures, but the Bull Shark preferred greater inlet distances and the Spiny Dogfish preferred lower temperatures than the other species. Extensive Smooth Dogfish habitat overlap with seagrass beds suggests that seagrass may be a critical part of nursery habitat for this species. Spatial delineation of shark habitat within the estuary will allow for better protection of essential habitat and assessment of potential interactions with other species.


Ecosystem , Estuaries , Sharks/physiology , Animals , Conservation of Natural Resources , Discriminant Analysis , Fisheries , Geography , Linear Models , North Carolina , Temperature
5.
PLoS One ; 13(2): e0192520, 2018.
Article En | MEDLINE | ID: mdl-29394292

[This corrects the article DOI: 10.1371/journal.pone.0188955.].

6.
PLoS One ; 12(12): e0188955, 2017.
Article En | MEDLINE | ID: mdl-29216310

BOOSTED REGRESSION TREES. EXCELLENT FOR DATA-POOR SPATIAL MANAGEMENT BUT HARD TO USE: Marine resource managers and scientists often advocate spatial approaches to manage data-poor species. Existing spatial prediction and management techniques are either insufficiently robust, struggle with sparse input data, or make suboptimal use of multiple explanatory variables. Boosted Regression Trees feature excellent performance and are well suited to modelling the distribution of data-limited species, but are extremely complicated and time-consuming to learn and use, hindering access for a wide potential user base and therefore limiting uptake and usage. BRTS AUTOMATED AND SIMPLIFIED FOR ACCESSIBLE GENERAL USE WITH RICH FEATURE SET: We have built a software suite in R which integrates pre-existing functions with new tailor-made functions to automate the processing and predictive mapping of species abundance data: by automating and greatly simplifying Boosted Regression Tree spatial modelling, the gbm.auto R package suite makes this powerful statistical modelling technique more accessible to potential users in the ecological and modelling communities. The package and its documentation allow the user to generate maps of predicted abundance, visualise the representativeness of those abundance maps and to plot the relative influence of explanatory variables and their relationship to the response variables. Databases of the processed model objects and a report explaining all the steps taken within the model are also generated. The package includes a previously unavailable Decision Support Tool which combines estimated escapement biomass (the percentage of an exploited population which must be retained each year to conserve it) with the predicted abundance maps to generate maps showing the location and size of habitat that should be protected to conserve the target stocks (candidate MPAs), based on stakeholder priorities, such as the minimisation of fishing effort displacement. GBM.AUTO FOR MANAGEMENT IN VARIOUS SETTINGS: By bridging the gap between advanced statistical methods for species distribution modelling and conservation science, management and policy, these tools can allow improved spatial abundance predictions, and therefore better management, decision-making, and conservation. Although this package was built to support spatial management of a data-limited marine elasmobranch fishery, it should be equally applicable to spatial abundance modelling, area protection, and stakeholder engagement in various scenarios.


Computer Simulation , Conservation of Natural Resources , Seawater , Software
...