Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Ecology ; : e4299, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38650359

Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.

2.
Proc Natl Acad Sci U S A ; 121(17): e2307216121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38621126

Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia.


Butterflies , Fires , Animals , Ecosystem , Soil , Forests , Trees , Biodiversity
3.
Curr Biol ; 33(17): 3722-3731.e4, 2023 09 11.
Article En | MEDLINE | ID: mdl-37625415

Spatial relationships between sympatric species underpin biotic interactions, structure ecological communities, and maintain ecosystem health. However, the resilience of interspecific spatial associations to human habitat modification remains largely unknown, particularly in tropical regions where anthropogenic impacts are often greatest. We applied multi-state multi-species occurrence models to camera trap data across nine tropical landscapes in Colombia to understand how prominent threats to forest ecosystems influence Neotropical carnivore occurrence and interspecific spatial associations, with implications for biotic interactions. We show that carnivore occurrence represents a delicate balance between local environmental conditions and interspecific interactions that can be compromised in areas of extensive habitat modification. The stability of carnivore spatial associations depends on forest cover to mediate antagonistic encounters with apex predators and structurally intact forests to facilitate coexistence between competing mesocarnivores. Notably, we demonstrate that jaguars play an irreplaceable role in spatially structuring mesocarnivore communities, providing novel evidence on their role as keystone species. With increasing global change, conserving both the extent and quality of tropical forests is imperative to support carnivores and preserve the spatial associations that underpin ecosystem stability and resilience.


Ecosystem , Panthera , Humans , Animals , Forests , Anthropogenic Effects
4.
Ecol Evol ; 13(5)2023 May.
Article En | MEDLINE | ID: mdl-37181204

Pangolin species are notoriously difficult to detect and monitor in the wild and, as a result, commonly used survey techniques fall short in gathering sufficient data to draw confident conclusions on pangolin populations, conservation status, and natural history. The white-bellied pangolin is a semiarboreal species that may be poorly detected in general mammal surveys even with modern techniques such as camera-trapping. As a result, population status information is often derived from hunting, market, and trafficking data. There is therefore a crucial need to improve camera-trap survey methods to reliably detect this species in its natural environment. Here, we test the influence of camera-trap placement strategy on the detectability of the white-bellied pangolin by comparing estimates from targeted ground-viewing camera-trapping and a novel log-viewing placement strategy adapted from local hunters' knowledge. Our results suggest that (1) deploying camera-traps to detect animals walking along logs is an effective strategy for recording several forest species, including the white-bellied pangolin, and (2) that camera-traps targeting logs are more efficient at detecting white-bellied pangolins than camera-traps viewing the ground (>100% increase in detection probability). We also found moderate evidence that there is a relationship between the white-bellied pangolin occurrence at our locality and elevation and weak evidence of an association with distance to the nearest river. Our results suggest an effective new monitoring approach allowing consistent detection of the white-bellied pangolin with moderate survey effort. This highlights the importance of harnessing local knowledge to guide the design of monitoring protocols for cryptic species.

5.
Sci Total Environ ; 866: 161075, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36565871

Indonesia is embarking on an ambitious relocation of its capital city to Kalimantan, Borneo, bringing with it major urban and road infrastructure. Yet, despite being one of the world's most biologically diverse regions, the potential implications of this development for wildlife have yet to be fully assessed. We explored the potential impacts of the capital relocation, and road expansion and upgrades to critical habitat for medium-large mammals (>1 kg) using camera trap data from 11 forested landscapes. We applied Bayesian multi-species occupancy models to predict community and species-level responses to anthropogenic and environmental factors. We extrapolated spatial patterns of occupancy and species diversity across the forests of Kalimantan and identified "critical habitats" as the top 20th percentile of occupancy and species richness values. We subsequently overlapped these critical habitat layers with infrastructure impact zones to estimate the area that could potentially be affected by direct or secondary impacts. At both the community and species-level, distance to primary roads had the strongest negative influence on habitat-use. Occupancy was also influenced by forest quality and multidimensional poverty conditions in adjacent villages, demonstrating the sensitivity of biodiversity to socio-ecological pressures. Less than 1 % of the critical habitat for the threatened mammal community lay within the direct impact zone (30 km radius) of the capital relocation. However, approximately 16 % was located within 200 km and could potentially be affected by uncontrolled secondary impacts such as urban sprawl and associated regional development. The often-overlooked secondary implications of upgrading existing roads could also intersect a large amount of critical habitat for lowland species. Mitigating far-reaching secondary impacts of infrastructure development should be fully incorporated into environmental impact assessments. This will provide Indonesia with an opportunity to set an example of sustainable infrastructure development in the tropics.


Biodiversity , Conservation of Natural Resources , Animals , Indonesia , Borneo , Bayes Theorem , Ecosystem , Forests , Mammals/physiology
6.
Nature ; 612(7941): 707-713, 2022 12.
Article En | MEDLINE | ID: mdl-36517596

Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.


Birds , Energy Metabolism , Food Chain , Forestry , Forests , Mammals , Tropical Climate , Animals , Biodiversity , Biomass , Birds/physiology , Borneo , Mammals/physiology , Palm Oil , Trees/growth & development , Ecology
7.
J Anim Ecol ; 91(3): 604-617, 2022 03.
Article En | MEDLINE | ID: mdl-34954816

Conservation outcomes could be greatly enhanced if strategies addressing anthropogenic land-use change considered the impacts of these changes on entire communities as well as on individual species. Examining how species interactions change across gradients of habitat disturbance allows us to predict the cascading consequences of species extinctions and the response of ecological networks to environmental change. We conducted the first detailed study of changes in a commensalist network of mammals and dung beetles across an environmental disturbance gradient, from primary tropical forest to plantations, which varied in above-ground carbon density (ACD) and mammal communities. Mammal diversity changed only slightly across the gradient, remaining high even in oil palm plantations and fragmented forest. Dung beetle species richness, however, declined in response to lower ACD and was particularly low in plantations and the most disturbed forest sites. Three of the five network metrics (nestedness, network specialization and functionality) were significantly affected by changes in dung beetle species richness and ACD, but mammal diversity was not an important predictor of network structure. Overall, the interaction networks remained structurally and functionally similar across the gradient, only becoming simplified (i.e. with fewer dung beetle species and fewer interactions) in the most disturbed sites. We suggest that the high diversity of mammals, even in disturbed forests, combined with the generalist feeding patterns of dung beetles, confer resilience to the commensalist dung beetle-mammal networks. This study highlights the importance of protecting logged and fragmented forests to maintain interaction networks and potentially prevent extinction cascades in human-modified systems.


Coleoptera , Animals , Biodiversity , Coleoptera/physiology , Ecosystem , Forests , Mammals
8.
Proc Natl Acad Sci U S A ; 117(42): 26254-26262, 2020 10 20.
Article En | MEDLINE | ID: mdl-32989143

Tropical forest ecosystems are facing unprecedented levels of degradation, severely compromising habitat suitability for wildlife. Despite the fundamental role biodiversity plays in forest regeneration, identifying and prioritizing degraded forests for restoration or conservation, based on their wildlife value, remains a significant challenge. Efforts to characterize habitat selection are also weakened by simple classifications of human-modified tropical forests as intact vs. degraded, which ignore the influence that three-dimensional (3D) forest structure may have on species distributions. Here, we develop a framework to identify conservation and restoration opportunities across logged forests in Borneo. We couple high-resolution airborne light detection and ranging (LiDAR) and camera trap data to characterize the response of a tropical mammal community to changes in 3D forest structure across a degradation gradient. Mammals were most responsive to covariates that accounted explicitly for the vertical and horizontal characteristics of the forest and actively selected structurally complex environments comprising tall canopies, increased plant area index throughout the vertical column, and the availability of a greater diversity of niches. We show that mammals are sensitive to structural simplification through disturbance, emphasizing the importance of maintaining and enhancing structurally intact forests. By calculating occurrence thresholds of species in response to forest structural change, we identify areas of degraded forest that would provide maximum benefit for multiple high-conservation value species if restored. The study demonstrates the advantages of using LiDAR to map forest structure, rather than relying on overly simplistic classifications of human-modified tropical forests, for prioritizing regions for restoration.


Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods , Animals , Biodiversity , Borneo , Ecosystem , Forests , Mammals , Models, Theoretical , Plants , Tropical Climate
9.
Nat Commun ; 9(1): 3455, 2018 08 27.
Article En | MEDLINE | ID: mdl-30150649

Tigers are critically endangered due to deforestation and persecution. Yet in places, Sumatran tigers (Panthera tigris sumatrae) continue to coexist with people, offering insights for managing wildlife elsewhere. Here, we couple spatial models of encounter risk with information on tolerance from 2386 Sumatrans to reveal drivers of human-tiger conflict. Risk of encountering tigers was greater around populated villages that neighboured forest or rivers connecting tiger habitat; geographic profiles refined these predictions to three core areas. People's tolerance for tigers was related to underlying attitudes, emotions, norms and spiritual beliefs. Combining this information into socio-ecological models yielded predictions of tolerance that were 32 times better than models based on social predictors alone. Pre-emptive intervention based on these socio-ecological predictions could have averted up to 51% of attacks on livestock and people, saving 15 tigers. Our work provides further evidence of the benefits of interdisciplinary research on conservation conflicts.


Ecology/methods , Tigers , Animals , Conservation of Natural Resources , Ecosystem , Endangered Species , Humans , Models, Theoretical
10.
PhytoKeys ; (63): 63-76, 2016.
Article En | MEDLINE | ID: mdl-27489479

Polyceratocarpus askhambryan-iringae, an endemic tree species of Annonaceae from the Udzungwa Mountains of Tanzania, is described and illustrated. The new species is identified as a member of the genus Polyceratocarpus by the combination of staminate and bisexual flowers, axillary inflorescences, subequal outer and inner petals, and multi-seeded monocarps with pitted seeds. From Polyceratocarpus scheffleri, with which it has previously been confused, it differs in the longer pedicels, smaller and thinner petals, shorter bracts, and by generally smaller, less curved monocarps that have a clear stipe and usually have fewer seeds. Because Polyceratocarpus askhambryan-iringae has a restricted extent of occurrence, area of occupancy, and ongoing degradation of its forest habitat, we recommend classification of it as Endangered (EN) on the IUCN Red List.

11.
Zoo Biol ; 35(5): 385-397, 2016 Sep.
Article En | MEDLINE | ID: mdl-27486862

Multi-zoo comparisons of animal welfare are rare, and yet vital for ensuring continued improvement of zoo enclosures and husbandry. Methods are not standardized for the development of zoo enclosures based on multiple indicators, and case study species are required. This study compares behavior and breeding success to various enclosure and husbandry parameters for the Humboldt penguin, Spheniscus humboldti, for the development of improved enclosure design. Behavioral sampling was completed at Flamingo Land over a period of 8 months. Further data on behavior, enclosure design, and breeding success were collected via questionnaires, visits to zoos, and literature review. Breeding success was primarily influenced by colony age and number of breeding pairs, suggesting an important social influence on reproduction. Across zoos, there was also significant variation in behavior. The proportion of time spent in water varied between zoos (2-23%) and was used as an indicator of physical activity and natural behavior. Regression models revealed that water-use was best predicted by total enclosure area per penguin, followed by land area, with some evidence for positive influence of pool surface area per penguin. Predominantly linear/curvilinear increases in our biological indicators with enclosure parameters suggest that optimal conditions for S. humboldti were not met among the selected zoos. We propose revised minimum conditions for S. humboldti enclosure design, which exceed those in the existing husbandry guidelines. We present a framework for the evaluation of zoo enclosures and suggest that a rigorous scientific protocol be established for the design of new enclosures, based on multivariate methods. Zoo Biol. 35:385-397, 2016. © Wiley Periodicals, Inc.


Animal Husbandry/standards , Animals, Zoo/physiology , Behavior, Animal/physiology , Conservation of Natural Resources , Housing, Animal/standards , Spheniscidae/physiology , Animal Welfare , Animals , Breeding , Regression Analysis , Reproduction/physiology
...