Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 16(11)2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30400299

RESUMEN

Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)-a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin-is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pests.


Asunto(s)
Factores Biológicos/farmacología , Caulerpa/metabolismo , Enfermedades de los Peces/etiología , Indoles/toxicidad , Especies Introducidas , Perciformes/fisiología , Receptores Activados del Proliferador del Peroxisoma/agonistas , Animales , Factores Biológicos/metabolismo , Simulación por Computador , Ecotoxicología , Enfermedades de los Peces/metabolismo , Cadena Alimentaria , Indoles/metabolismo , Ligandos , Modelos Biológicos , Receptores Activados del Proliferador del Peroxisoma/metabolismo
2.
Results Probl Cell Differ ; 65: 423-438, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083930

RESUMEN

Fish have proven to be valuable models in the study of the endocrine control of appetite in response to peripheral signals of energetic and nutritional status. In parallel, a growing body of literature points to the importance of sensory experiences as factors affecting food choice in fish, with a special focus on visual and chemical signals allowing discrimination of potential foods within a 3D environment. Accordingly, waterborne compounds, such as monosaccharides or amino acids, are regarded as the main "olfactory" cues driving fish alimentary behavior. However, we recently suggested that hydrophobic molecules also allow food identification in aquatic environments and that fish actually explore a larger variety of chemosensory cues, including the olfactory/volatile compounds, when determining food palatability. In this study, we show that both homeostatic and chemosensory mechanisms involved in food intake are highly conserved in vertebrates and that the chemosensory world of fish is less different from that of terrestrial mammals than commonly thought. As a result, we support a more integrated and synthetic view of the mechanisms of chemical communication in both terrestrial and aquatic systems, which could help to ensure greater translatability of the fish models, such as the zebrafish (Danio rerio), the turquoise killifish (Nothobranchius furzeri), the goldfish (Carassius auratus), or the Japanese medaka fish (Oryzias latipes) to terrestrial vertebrates when approaching complex dynamic patterns in alimentary behavior.


Asunto(s)
Conducta Apetitiva , Peces/fisiología , Modelos Biológicos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA