Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Nature ; 620(7974): 600-606, 2023 Aug.
Article En | MEDLINE | ID: mdl-37495691

Social anthropology and ethnographic studies have described kinship systems and networks of contact and exchange in extant populations1-4. However, for prehistoric societies, these systems can be studied only indirectly from biological and cultural remains. Stable isotope data, sex and age at death can provide insights into the demographic structure of a burial community and identify local versus non-local childhood signatures, archaeogenetic data can reconstruct the biological relationships between individuals, which enables the reconstruction of pedigrees, and combined evidence informs on kinship practices and residence patterns in prehistoric societies. Here we report ancient DNA, strontium isotope and contextual data from more than 100 individuals from the site Gurgy 'les Noisats' (France), dated to the western European Neolithic around 4850-4500 BC. We find that this burial community was genetically connected by two main pedigrees, spanning seven generations, that were patrilocal and patrilineal, with evidence for female exogamy and exchange with genetically close neighbouring groups. The microdemographic structure of individuals linked and unlinked to the pedigrees reveals additional information about the social structure, living conditions and site occupation. The absence of half-siblings and the high number of adult full siblings suggest that there were stable health conditions and a supportive social network, facilitating high fertility and low mortality5. Age-structure differences and strontium isotope results by generation indicate that the site was used for just a few decades, providing new insights into shifting sedentary farming practices during the European Neolithic.


Anthropology, Cultural , Pedigree , Social Environment , Adult , Child , Female , Humans , Male , Agriculture/history , Burial/history , Fathers/history , Fertility , France , History, Ancient , Mortality/history , Siblings , Social Support/history , Strontium Isotopes/analysis , Mothers/history
2.
iScience ; 25(11): 105387, 2022 Nov 18.
Article En | MEDLINE | ID: mdl-36405775

Archaeological research shows that the dispersal of the Neolithic took a more complex turn when reaching western Europe, painting a contrasted picture of interactions between autochthonous hunter-gatherers (HGs) and incoming farmers. In order to clarify the mode, the intensity, and the regional variability of biological exchanges implied in these processes, we report new palaeogenomic data from Occitanie, a key region in Southern France. Genomic data from 28 individuals originating from six sites spanning from c. 5,500 to c. 2,500 BCE allow us to characterize regional patterns of ancestries throughout the Neolithic period. Results highlight major differences between the Mediterranean and Continental Neolithic expansion routes regarding both migration and interaction processes. High proportions of HG ancestry in both Early and Late Neolithic groups in Southern France support multiple pulses of inter-group gene flow throughout time and space and confirm the need for regional studies to address the complexity of the processes involved.

3.
Mol Biol Evol ; 39(6)2022 06 02.
Article En | MEDLINE | ID: mdl-35578825

Human expansion in the course of the Neolithic transition in western Eurasia has been one of the major topics in ancient DNA research in the last 10 years. Multiple studies have shown that the spread of agriculture and animal husbandry from the Near East across Europe was accompanied by large-scale human expansions. Moreover, changes in subsistence and migration associated with the Neolithic transition have been hypothesized to involve genetic adaptation. Here, we present high quality genome-wide data from the Linear Pottery Culture site Derenburg-Meerenstieg II (DER) (N = 32 individuals) in Central Germany. Population genetic analyses show that the DER individuals carried predominantly Anatolian Neolithic-like ancestry and a very limited degree of local hunter-gatherer admixture, similar to other early European farmers. Increasing the Linear Pottery culture cohort size to ∼100 individuals allowed us to perform various frequency- and haplotype-based analyses to investigate signatures of selection associated with changes following the adoption of the Neolithic lifestyle. In addition, we developed a new method called Admixture-informed Maximum-likelihood Estimation for Selection Scans that allowed us test for selection signatures in an admixture-aware fashion. Focusing on the intersection of results from these selection scans, we identified various loci associated with immune function (JAK1, HLA-DQB1) and metabolism (LMF1, LEPR, SORBS1), as well as skin color (SLC24A5, CD82) and folate synthesis (MTHFR, NBPF3). Our findings shed light on the evolutionary pressures, such as infectious disease and changing diet, that were faced by the early farmers of Western Eurasia.


Farmers , Human Migration , Agriculture , DNA, Ancient , DNA, Mitochondrial/genetics , Europe , Genetics, Population , History, Ancient , Humans
4.
Proc Natl Acad Sci U S A ; 119(18): e2120786119, 2022 05 03.
Article En | MEDLINE | ID: mdl-35446690

The Middle Neolithic in western Europe is characterized by monumental funerary structures, known as megaliths, along the Atlantic façade. The first manifestations of this phenomenon occurred in modern-day France with the long mounds of the Cerny culture. Here, we present genome-wide data from the fifth-millennium BCE site of Fleury-sur-Orne in Normandy (France), famous for its impressively long monuments built for selected individuals. The site encompasses 32 monuments of variable sizes, containing the burials of 19 individuals from the Neolithic period. To address who was buried at the site, we generated genome-wide data for 14 individuals, of whom 13 are males, completing previously published data [M. Rivollat et al., Sci. Adv. 6, eaaz5344 (2020)]. Population genetic and Y chromosome analyses show that the Fleury-sur-Orne group fits within western European Neolithic genetic diversity and that the arrival of a new group is detected after 4,000 calibrated BCE. The results of analyzing uniparentally inherited markers and an overall low number of long runs of homozygosity suggest a patrilineal group practicing female exogamy. We find two pairs of individuals to be father and son, buried together in the same monument/grave. No other biological relationship can link monuments together, suggesting that each monument was dedicated to a genetically independent lineage. The combined data and documented father­son line of descent suggest a male-mediated transmission of sociopolitical authority. However, a single female buried with an arrowhead, otherwise considered a symbol of power of the male elite of the Cerny culture, questions a strictly biological sex bias in the burial rites of this otherwise "masculine" monumental cemetery.


Cemeteries , DNA, Ancient , Archaeology , Burial/history , DNA, Mitochondrial/genetics , Female , Genomics , History, Ancient , Humans , Male
5.
Ecol Evol ; 12(4): e8825, 2022 Apr.
Article En | MEDLINE | ID: mdl-35441006

Higher education in evolutionary anthropology involves providing students with in-depth knowledge of biological and cultural heritage sites and collections that are frequently inaccessible. Indeed, most sites, fossils, and archaeological remains can be visited or manipulated only rarely and solely by specialists with extensive experience. Owing to the development of 3D and medical imaging techniques, this fragile heritage is now more widely accessible, and in a dynamic way. However, exclusive adoption of virtual teaching and learning has a negative impact on student engagement and, naturally, on exchanges with instructors, and thus cannot be used without some reservations. In the ITAP (Immersion dans les Terrains de l'Anthropologie biologique et de la Préhistoire) project of the higher education STEP (Soutien à la Transformation et à l'Expérimentation Pédagogiques) transformation program at the University of Bordeaux, we combine student-active teaching with Master's students fully immersed in ongoing fieldwork, laboratory study, and dissemination of research results in order to develop more individually shaped learning curricula and to foster both professional and new interdisciplinary skills. Here, we present examples of experiments conducted in the ITAP project using both authentic and virtual collections of archaeological, experimental, and reference materials that help to break down the barriers between research activities and higher education, as well as providing a more general appraisal of the appropriate use of virtual tools in higher education by combining them with real-life situations.

6.
iScience ; 25(4): 104094, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35402880

The Iron Age period occupies an important place in French history because the Gauls are regularly presented as the direct ancestors of the extant French population. We documented here the genomic diversity of Iron Age communities originating from six French regions. The 49 acquired genomes permitted us to highlight an absence of discontinuity between Bronze Age and Iron Age groups in France, lending support to a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. Genomic analyses revealed strong genetic homogeneity among the regional groups associated with distinct archaeological cultures. This genomic homogenization appears to be linked to individuals' mobility between regions and gene flow with neighbouring groups from England and Spain. Thus, the results globally support a common genomic legacy for the Iron Age population of modern-day France that could be linked to recurrent gene flow between culturally differentiated communities.

7.
Sci Rep ; 11(1): 15005, 2021 07 22.
Article En | MEDLINE | ID: mdl-34294811

Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the "mappable" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.


Alleles , Chromosomes, Human, Y , Genetics, Population , Haplotypes , DNA, Mitochondrial , Genetic Markers , Genetic Testing , Genetics, Population/methods , Humans , Polymorphism, Single Nucleotide
8.
Sci Adv ; 6(22): eaaz5344, 2020 05.
Article En | MEDLINE | ID: mdl-32523989

Starting from 12,000 years ago in the Middle East, the Neolithic lifestyle spread across Europe via separate continental and Mediterranean routes. Genomes from early European farmers have shown a clear Near Eastern/Anatolian genetic affinity with limited contribution from hunter-gatherers. However, no genomic data are available from modern-day France, where both routes converged, as evidenced by a mosaic cultural pattern. Here, we present genome-wide data from 101 individuals from 12 sites covering today's France and Germany from the Mesolithic (N = 3) to the Neolithic (N = 98) (7000-3000 BCE). Using the genetic substructure observed in European hunter-gatherers, we characterize diverse patterns of admixture in different regions, consistent with both routes of expansion. Early western European farmers show a higher proportion of distinctly western hunter-gatherer ancestry compared to central/southeastern farmers. Our data highlight the complexity of the biological interactions during the Neolithic expansion by revealing major regional variations.

9.
Am J Phys Anthropol ; 173(2): 218-235, 2020 10.
Article En | MEDLINE | ID: mdl-32557548

OBJECTIVES: The aims of this research are to explore the diet, mobility, social organization, and environmental exploitation patterns of early Mediterranean farmers, particularly the role of marine and plant resources in these foodways. In addition, this work strives to document possible gendered patterns of behavior linked to the neolithization of this ecologically rich area. To achieve this, a set of multiproxy analyses (isotopic analyses, dental calculus, microremains analysis, ancient DNA) were performed on an exceptional deposit (n = 61) of human remains from the Les Bréguières site (France), dating to the transition of the sixth to the fifth millennium BCE. MATERIALS AND METHODS: The samples used in this study were excavated from the Les Bréguières site (Mougins, Alpes-Maritimes, France), located along the southeastern Mediterranean coastline of France. Stable isotope analyses (C, N) on bone collagen (17 coxal bones, 35 craniofacial elements) were performed as a means to infer protein intake during tissue development. Sulfur isotope ratios were used as indicators of geographical and environmental points of origin. The study of ancient dental calculus helped document the consumption of plants. Strontium isotope analysis on tooth enamel (n = 56) was conducted to infer human provenance and territorial mobility. Finally, ancient DNA analysis was performed to study maternal versus paternal diversity within this Neolithic group (n = 30). RESULTS: Stable isotope ratios for human bones range from -20.3 to -18.1‰ for C, from 8.9 to 11.1‰ for N and from 6.4 to 15‰ for S. Domestic animal data range from -22.0 to -20.2‰ for C, from 4.1 to 6.9‰ for N, and from 10.2 to 12.5‰ for S. Human enamel 87 Sr/86 Sr range from 0.7081 to 0.7102, slightly wider than the animal range (between 0.7087 and 0.7096). Starch and phytolith microremains were recovered as well as other types of remains (e.g., hairs, diatoms, fungal spores). Starch grains include Triticeae type and phytolith includes dicotyledons and monocot types as panicoid grasses. Mitochondrial DNA characterized eight different maternal lineages: H1, H3, HV (5.26%), J (10.53%), J1, K, T (5.2%), and U5 (10.53%) but no sample yielded reproducible Y chromosome SNPs, preventing paternal lineage characterization. DISCUSSION: Carbon and nitrogen stable isotope ratios indicate a consumption of protein by humans mainly focused on terrestrial animals and possible exploitation of marine resources for one male and one undetermined adult. Sulfur stable isotope ratios allowed distinguishing groups with different geographical origins, including two females possibly more exposed to the sea spray effect. While strontium isotope data do not indicate different origins for the individuals, mitochondrial lineage diversity from petrous bone DNA suggests the burial includes genetically differentiated groups or a group practicing patrilocality. Moreover, the diversity of plant microremains recorded in dental calculus provide the first evidence that the groups of Les Bréguières consumed a wide breadth of plant foods (as cereals and wild taxa) that required access to diverse environments. This transdisciplinary research paves the way for new perspectives and highlights the relevance for novel research of contexts (whether recently discovered or in museum collections) excavated near shorelines, due to the richness of the biodiversity and the wide range of edible resources available.


Diet/history , Human Migration/history , Animals , Anthropology, Physical , Bone and Bones/chemistry , DNA, Ancient/analysis , DNA, Mitochondrial , Dental Calculus/history , Edible Grain/genetics , Food/history , France , History, Ancient , Humans , Isotopes/analysis , Mediterranean Region
10.
Am J Phys Anthropol ; 170(4): 507-518, 2019 12.
Article En | MEDLINE | ID: mdl-31599974

OBJECTIVES: The history of the Caribbean region is marked by numerous and various successive migration waves that resulted in a global blending of African, European, and Amerindian lineages. As the origin and genetic composition of the current population of French Caribbean islands has not been studied to date, we used both mitochondrial DNA and Y-chromosome markers to complete the characterization of the dynamics of admixture in the Guadeloupe archipelago. MATERIALS AND METHODS: We sequenced the mitochondrial hypervariable regions and genotyped mitochondrial and Y-chromosomal single nucleotide polymorphisms (SNPs) of 198 individuals from five localities of the Guadeloupe archipelago. RESULTS: The maternal haplogroups revealed a blend of 85% African lineages (mainly traced to Western, West-Central, and South-Eastern Africa), 12.5% Eurasian lineages, and 0.5% Amerindian lineages. We highlighted disequilibria between European paternal contribution (44%) and European maternal contribution (7%), pointing out an important sexual asymmetry. Finally, the estimated Native American component was strikingly low and supported the near-extinction of native lineages in the region. DISCUSSION: We confirmed that all historically known migratory events indeed left a visible genetic imprint in the contemporary Caribbean populations. The data gathered clearly demonstrated the significant impact of the transatlantic slave trade on the Guadeloupean population's constitution. Altogether, the data in our study confirm that in the Caribbean region, human population variation is correlated with colonial and postcolonial policies and unique island histories.


Chromosomes, Human, Y , DNA, Mitochondrial/analysis , Human Migration , Polymorphism, Single Nucleotide , Africa/ethnology , Europe/ethnology , Female , Genotype , Guadeloupe , Heredity , Humans , Male , South America/ethnology
11.
PLoS One ; 13(12): e0207459, 2018.
Article En | MEDLINE | ID: mdl-30521562

The compilation of archaeological and genetic data for ancient European human groups has provided persuasive evidence for a complex series of migrations, population replacements and admixture until the Bronze Age. If the Bronze-to-Iron Age transition has been well documented archaeologically, ancient DNA (aDNA) remains rare for the latter period and does not precisely reflect the genetic diversity of European Celtic groups. In order to document the evolution of European communities, we analysed 45 individuals from the Late Iron Age (La Tène) Urville-Nacqueville necropolis in northwestern France, a region recognized as a major cultural contact zone between groups from both sides of the Channel. The characterization of 37 HVS-I mitochondrial sequences and 40 haplogroups provided the largest maternal gene pool yet recovered for the European Iron Age. First, descriptive analyses allowed us to demonstrate the presence of substantial amounts of steppe-related mitochondrial ancestry in the community, which is consistent with the expansion of Bell Beaker groups bearing an important steppe legacy in northwestern Europe at approximately 2500 BC. Second, maternal genetic affinities highlighted with Bronze Age groups from Great Britain and the Iberian Peninsula regions tends to support the idea that the continuous cultural exchanges documented archaeologically across the Channel and along the Atlantic coast (during and after the Bronze Age period) were accompanied by significant gene flow. Lastly, our results suggest a maternal genetic continuity between Bronze Age and Iron Age groups that would argue in favour of a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. The palaeogenetic data gathered for the Urville-Nacqueville group constitute an important step in the biological characterization of European Iron age groups. Clearly, more numerous and diachronic aDNA data are needed to fully understand the complex relationship between the cultural and biological evolution of groups from the period.


DNA, Mitochondrial/genetics , White People/genetics , Archaeology/methods , DNA, Ancient/analysis , DNA, Mitochondrial/analysis , Europe/ethnology , France/ethnology , Gene Pool , Genetic Variation/genetics , Genetics, Population/methods , Genotype , Haplotypes , History, Ancient , Humans , United Kingdom
12.
PLoS One ; 12(7): e0179742, 2017.
Article En | MEDLINE | ID: mdl-28678860

In Europe, the Middle Neolithic is characterized by an important diversification of cultures. In northeastern France, the appearance of the Michelsberg culture has been correlated with major cultural changes and interpreted as the result of the settlement of new groups originating from the Paris Basin. This cultural transition has been accompanied by the expansion of particular funerary practices involving inhumations within circular pits and individuals in "non-conventional" positions (deposited in the pits without any particular treatment). If the status of such individuals has been highly debated, the sacrifice hypothesis has been retained for the site of Gougenheim (Alsace). At the regional level, the analysis of the Gougenheim mitochondrial gene pool (SNPs and HVR-I sequence analyses) permitted us to highlight a major genetic break associated with the emergence of the Michelsberg in the region. This genetic discontinuity appeared to be linked to new affinities with farmers from the Paris Basin, correlated to a noticeable hunter-gatherer legacy. All of the evidence gathered supports (i) the occidental origin of the Michelsberg groups and (ii) the potential implication of this migration in the progression of the hunter-gatherer legacy from the Paris Basin to Alsace / Western Germany at the beginning of the Late Neolithic. At the local level, we noted some differences in the maternal gene pool of individuals in "conventional" vs. "non-conventional" positions. The relative genetic isolation of these sub-groups nicely echoes both their social distinction and the hypothesis of sacrifices retained for the site. Our investigation demonstrates that a multi-scale aDNA study of ancient communities offers a unique opportunity to disentangle the complex relationships between cultural and biological evolution.


Ceremonial Behavior , DNA, Ancient/isolation & purification , Burial , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , Farmers , Female , France , Human Migration , Humans , Male , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
13.
Eur J Hum Genet ; 25(3): 388-392, 2017 02.
Article En | MEDLINE | ID: mdl-28029148

Recent ancient DNA studies on European Neolithic human populations have provided persuasive evidence of a major migration of farmers originating from the Aegean, accompanied by sporadic hunter-gatherer admixture into early Neolithic populations, but increasing toward the Late Neolithic. In this context, ancient mitochondrial DNA data collected from the Neolithic necropolis of Gurgy (Paris Basin, France), the largest mitochondrial DNA sample obtained from a single archeological site for the Early/Middle Neolithic period, indicate little differentiation from farmers associated to both the Danubian and Mediterranean Neolithic migration routes, as well as from Western European hunter-gatherers. To test whether this pattern of differentiation could arise in a single unstructured population by genetic drift alone, we used serial coalescent simulations. We explore female effective population size parameter combinations at the time of the colonization of Europe 45000 years ago and the most recent of the Neolithic samples analyzed in this study 5900 years ago, and identify conditions under which population panmixia between hunter-gatherers/Early-Middle Neolithic farmers and Gurgy cannot be rejected. In relation to other studies on the current debate of the origins of Europeans, these results suggest increasing hunter-gatherer admixture into farmers' group migrating farther west in Europe.


DNA, Mitochondrial/genetics , Evolution, Molecular , Models, Genetic , Europe , Female , Genetic Drift , Human Migration , Humans , Male , Pedigree , White People/genetics
14.
Am J Phys Anthropol ; 161(3): 522-529, 2016 11.
Article En | MEDLINE | ID: mdl-27447353

OBJECTIVES: The arrival of Neolithic farmers in Europe was the source of major cultural and genetic transitions. Neolithic settlers brought a new set of maternal lineages (mitochondrial DNA), recently well-characterized on the continental road, from the Balkans to West Germany (Rhine River). In the present study, the first mitochondrial DNA data from groups associated with this continental expansion wave located west of the Rhine River has been provided and their genetic affinities with contemporary groups have been discussed. MATERIAL AND METHODS: The mitochondrial DNA analysis of 27 human remains originating from Obernai (5,000-4,400 cal. BC), a necropolis located in French Alsace Region and attributed to Grossgartach, Planig-Friedberg, and Roessen cultures was conducted. RESULTS AND DISCUSSION: Among the 27 individuals studied, 15 HVR-I sequences and 17 mitochondrial haplogroups could be determined. The analysis of the Obernai gene pool clearly confirmed the genetic homogeneity of Linearbandkeramik (LBK) groups on both sides of the Rhine River. Notably, one N1a sequence found in Obernai is shared with LBK farmers from Central Europe, including one individual from the Flomborn site located approximately 200 km north-east of Obernai. On the whole, data gathered so far showed major genetic influence of the Danubian wave from Transdanubia to Atlantic French Coast, going by Alsace Region. However, the genetic influence of descendants from the Mediterranean Neolithic expansion and the significant hunter-gatherer admixture detected further west in the Paris Basin were not perceived in the Obernai necropolis. CONCLUSIONS: Genetic homogeneity and continuity within LBK groups can be proposed on both sides of the Rhine River for the middle Neolithic groups. Nevertheless, mitochondrial data gathered so far for Neolithic groups from the entire extant French Territory clearly point out the complexity and the variability of Neolithic communities interactions that is worthy of further investigation.


DNA, Ancient/analysis , DNA, Mitochondrial/genetics , DNA, Mitochondrial/history , Agriculture , Anthropology, Physical , France , Haplotypes/genetics , History, Ancient , Humans
15.
PLoS One ; 11(2): e0148583, 2016.
Article En | MEDLINE | ID: mdl-26910855

The rapid Arab-Islamic conquest during the early Middle Ages led to major political and cultural changes in the Mediterranean world. Although the early medieval Muslim presence in the Iberian Peninsula is now well documented, based in the evaluation of archeological and historical sources, the Muslim expansion in the area north of the Pyrenees has only been documented so far through textual sources or rare archaeological data. Our study provides the first archaeo-anthropological testimony of the Muslim establishment in South of France through the multidisciplinary analysis of three graves excavated at Nimes. First, we argue in favor of burials that followed Islamic rites and then note the presence of a community practicing Muslim traditions in Nimes. Second, the radiometric dates obtained from all three human skeletons (between the 7th and the 9th centuries AD) echo historical sources documenting an early Muslim presence in southern Gaul (i.e., the first half of 8th century AD). Finally, palaeogenomic analyses conducted on the human remains provide arguments in favor of a North African ancestry of the three individuals, at least considering the paternal lineages. Given all of these data, we propose that the skeletons from the Nimes burials belonged to Berbers integrated into the Umayyad army during the Arab expansion in North Africa. Our discovery not only discusses the first anthropological and genetic data concerning the Muslim occupation of the Visigothic territory of Septimania but also highlights the complexity of the relationship between the two communities during this period.


Archaeology , Burial , Genomics , Islam , Paleontology , Ethnicity , France , Humans , Male
16.
PLoS One ; 10(4): e0125521, 2015.
Article En | MEDLINE | ID: mdl-25928633

An intense debate concerning the nature and mode of Neolithic transition in Europe has long received much attention. Recent publications of paleogenetic analyses focusing on ancient European farmers from Central Europe or the Iberian Peninsula have greatly contributed to this debate, providing arguments in favor of major migrations accompanying European Neolithization and highlighting noticeable genetic differentiation between farmers associated with two archaeologically defined migration routes: the Danube valley and the Mediterranean Sea. The aim of the present study was to fill a gap with the first paleogenetic data of Neolithic settlers from a region (France) where the two great currents came into both direct and indirect contact with each other. To this end, we analyzed the Gurgy 'Les Noisats' group, an Early/Middle Neolithic necropolis in the southern part of the Paris Basin. Interestingly, the archaeological record from this region highlighted a clear cultural influence from the Danubian cultural sphere but also notes exchanges with the Mediterranean cultural area. To unravel the processes implied in these cultural exchanges, we analyzed 102 individuals and obtained the largest Neolithic mitochondrial gene pool so far (39 HVS-I mitochondrial sequences and haplogroups for 55 individuals) from a single archaeological site from the Early/Middle Neolithic period. Pairwise FST values, haplogroup frequencies and shared informative haplotypes were calculated and compared with ancient and modern European and Near Eastern populations. These descriptive analyses provided patterns resulting from different evolutionary scenarios; however, the archaeological data available for the region suggest that the Gurgy group was formed through equivalent genetic contributions of farmer descendants from the Danubian and Mediterranean Neolithization waves. However, these results, that would constitute the most ancient genetic evidence of admixture between farmers from both Central and Mediterranean migration routes in the European Neolithization debate, are subject to confirmation through appropriate model-based approaches.


Archaeology/methods , Farmers/statistics & numerical data , DNA, Mitochondrial/genetics , Europe , France , Haplotypes/genetics , Humans , Molecular Sequence Data , Paris , White People
17.
Hum Hered ; 76(3-4): 121-32, 2013.
Article En | MEDLINE | ID: mdl-24861857

OBJECTIVES: The history of European populations is characterised by numerous migrations or demographic events that are likely to have had major impacts on the European gene pool patterns. This paper will focus on how ancient DNA (aDNA) data contribute to our understanding of past population dynamics in Europe. METHODS: Technological challenges of the palaeogenetic approach will be discussed. With these limitations in mind, it will be shown that the acquisition of aDNA now permits a glimpse of how human genetic diversity has changed, spatially and temporally, in Europe, from the Palaeolithic through to the present day. RESULTS: Although early modern human DNA sequences come only from rare exceptionally well-preserved specimens, genetic samples of a reasonable size are becoming available for the Mesolithic and the Neolithic periods, permitting a discussion of regional variation in the inferred mode of the spread of farming. Palaeogenetic data collected for ancient and more recent periods regularly demonstrate genetic discontinuity between past and present populations. CONCLUSIONS: The results indicate that only large diachronic aDNA datasets from throughout Europe will permit researchers to reliably identify all demographic and evolutionary events that shaped the modern European gene pool.


DNA/genetics , Biological Evolution , Europe , Gene Pool , Geography , History, Ancient , Humans , Time Factors
18.
Evol Anthropol ; 21(1): 24-37, 2012.
Article En | MEDLINE | ID: mdl-22307722

Neolithic processes underlying the distribution of genetic diversity among European populations have been the subject of intense debate since the first genetic data became available. However, patterns observed in the current European gene pool are the outcome of Paleolithic and Neolithic processes, overlaid with four millennia of further developments. This observation encouraged paleogeneticists to contribute to the debate by directly comparing genetic variation from the ancient inhabitants of Europe to their contemporary counterparts. Pre-Neolithic and Neolithic paleogenetic data are becoming increasingly available for north and northwest European populations. Despite the numerous problems inherent in the paleogenetic approach, the accumulation of ancient DNA datasets offers new perspectives from which to interpret the interactions between hunter-gatherer and farming communities. In light of information emerging from diverse disciplines, including recent paleogenetic studies, the most plausible model explaining the movement of Neolithic pioneer groups in central Europe is that of leapfrog migration.


DNA/genetics , Emigration and Immigration , Phylogeography , White People/genetics , Agriculture , Anthropology, Physical , Humans
19.
Forensic Sci Int ; 210(1-3): 102-9, 2011 Jul 15.
Article En | MEDLINE | ID: mdl-21367547

The analysis of DNA from archaeological human remains is plagued by a unique set of methodological problems concerning contamination with modern exogenous DNA. Through an original approach, we propose complementary methods to identify all potential sources of contamination and complete guidelines for the validation of ancient human sequences. The study presented was conducted on non-European human samples (Polynesian and Amerindian) which were collected with all precautions during excavation. This permitted us to distinguish without ambiguity authentic and contaminant sequences. The samples' origins and histories were perfectly known, allowing us to trace all potential contamination sources and to determine the efficiency of precautions followed during all steps of the study. The data obtained confirm that precautions taken during sampling effectively prevent contamination. However, we demonstrate that human contamination can also be introduced during genetic analyses even if all precautions are strictly followed. Indeed, numerous human contaminations were detected in template-PCR products and negative controls, resulting in a striking diversity of contaminant mitochondrial DNA sequences. We argue that this contamination partly derives from the primers. To our knowledge, no previous experiment has been performed to investigate primers as a possible source of human contamination despite the fact that this specific type of contamination poses a real problem in terms of validating ancient human DNA studies. Finally, we confirm that the detection of contaminants in negative controls is clearly related to the number of PCR cycles used. This study enhances our understanding of contamination processes and confirms that, in reality, an absolutely contamination-free situation cannot be obtained. As a consequence, we propose improvements to the guidelines usually followed in the field in order to take the highly probable contamination of PCR reagents, including primers, into account.


DNA Contamination , DNA Primers , DNA, Mitochondrial/genetics , Archaeology , Complementarity Determining Regions/genetics , Humans , Polymerase Chain Reaction , Sequence Analysis, DNA , Specimen Handling
20.
Am J Phys Anthropol ; 144(2): 248-57, 2011 Feb.
Article En | MEDLINE | ID: mdl-20872803

Molecular anthropology has been widely used to infer the origin and processes of the colonization of Polynesia. However, there are still a lack of representative geographical studies of Eastern Polynesia and unchallenged genetic data about ancient Polynesian people. The absence of both of these elements prevents an accurate description of the demographic processes of internal dispersion within the Polynesian triangle. This study provides a twofold analysis of ancient and modern mtDNA in the eastern part of French Polynesia: the Gambier Islands. The paleogenetic analyses conducted on burials of the Temoe Atoll (14(th) -17(th) centuries) represent the first fully authenticated ancient human sequences from Polynesia. The identification of the "Melanesian" Q1 mtDNA lineage in ancient human remains substantiates the Near Oceanic contribution to the early gene pool of this region. Modern samples originate from Mangareva Island. Genealogical investigations enable us to reliably identify the conservation of the Melanesian component in Easternmost Polynesia, despite recent European colonization. Finally, the identification of rare mutations in sequences belonging to haplogroup B4a1a1a provides new perspectives to the debate on the internal peopling of the Polynesian region. Altogether, the results laid out in our study put the emphasis on the necessity of controlled sampling when discussing the internal settlement of Polynesia.


DNA, Mitochondrial/genetics , Fossils , Native Hawaiian or Other Pacific Islander/genetics , Anthropology/methods , Emigration and Immigration , Genetic Markers/genetics , Genetic Variation , Humans , Melanesia , Polynesia , Sequence Analysis, DNA
...