Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; : 115599, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964699

RESUMEN

A novel bacterial display vector based on Escherichia coli has been engineered for recombinant protein production and purification. Accordingly, a construct harboring the enhanced green fluorescent protein (EGFP) and the ice nucleation protein (INP) was designed to produce EGFP via the surface display in E. coli cells. The fusion EGFP-expressed cells were then investigated using fluorescence measurement, SDS- and native-PAGE before and after TEV protease digestion. The displayed EGFP was obtained with a recovery of 57.7% as a single band on SDS-PAGE. Next, the efficiency of the cell surface display for mutant EGFP (EGFP S202H/Q204H) was examined in sensing copper ions. Under optimal conditions, a satisfactorily linear range for copper ions concentrations up to 10 nM with a detection limit of 0.073 nM was obtained for cell-displayed mutant EGFP (mEGFP). In the presence of bacterial cell lysates and purified mEGFP, response to copper was linear in the 2-10 nM and 0.1-2 µM concentration range, respectively, with a 1.3 nM and 0.14 µM limit of detection. The sensitivity of bacterial cell lysates and surface-displayed mEGFP in the detection of copper ions is higher than the purified mEGFP.

2.
Mol Biotechnol ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349458

RESUMEN

Vascular endothelial growth factor A165 (VEGF-A165) and VEGF receptor 2 (KDR) are important mediators of angiogenesis. We aimed to express the soluble KDR ligand-binding domain (sKDR1-3) and evaluate its interaction with the VEGF-A165 receptor-binding domain (VEGFA165-RBD). sKDR1-3 DNA was designed and subcloned into pPinkα-HC plasmid. The cassette was transfected into the Pichia pink™ 4 genome by homologous recombination. We optimized the expression of sKDR1-3 under the induction of different methanol concentrations. VEGFA165-RBD was expressed in E. coli BL21 harboring pET28a( +)─VEGFA165-RBD vector under induction with IPTG with/without lactose. Interaction and biological activity of sKDR1-3 and VEGFA165-RBD were investigated by ELISA and anti-proliferation tests. sKDR1-3 migrated on SDS-PAGE gel as a 35-180 kDa protein due to glycosylation. The relative expression level of sKDR1-3 under 1% methanol was higher than 0.5% and 4% methanol induction. IPTG and cysteine were suitable for induction and refolding of VEGFA165-RBD. 25 ng sKDR1-3 and 20 ng VEGFA165-RBD showed strong binding. sKDR1-3 bound to VEGFA165-RBD and VEGF-A165 with dissociation constants of 0.148 and 0.2 nM, respectively. 4-10 nM concentrations of sKDR1-3 inhibited the proliferation of HUVE cells induced by 5 nM VEGFA165-RBD. In consideration, sKDR1-3 in the nanomolar concentration range, is a promising anticancer drug to inhibit angiogenesis.

3.
Iran J Biotechnol ; 21(2): e3288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37228628

RESUMEN

Background: Over expression of Reteplase enzyme has already been studies in the periplasmic space of Escherichia coli (E. coli). However, the role different factors in its expresssin rate remained to be elucidated. Objectives: Optical cell density (OD), IPTG concentration, and expression time are highly effective in the protein expression rates. Therefore, we aimed to determine the optimum levels of these factors for reteplase expression using response surface methodology (RSM). Materials and Methods: The pET21b plasmid was used to sub-clone the designed reteplase gene. Then, the gene was transformed into E. coli BL21 strain. Induction of expression was done by IPTG and analyzed by the SDS page. experiments were designed using the RMS, while the effects of different conditions were evaluated using the Real time-PCR. Results: Sequence optimization removed all undesirable sequences of the designed gene. Transformation into E. coli BL21 was confirmed with an 1152 bp band on the agarose gel. A 39 kDa expression band on the SDS gel confirmed the gene expression. Performing 20 RSM-designed experiments, the optimum levels for IPTG concentration and OD were determined as 0.34mM and 5.6, respectively. Moreover, the optimum level of expression time was demonstrated to be 11.91 hours. The accuracy of the regression model for reteplase overexpression was confirmed by an F-value equal to 25.31 and a meager probability value [(Prob > F) < 0.0001]. The real-time-PCR results indicated that the performed calculations were highly accurate. Conclusion: The obtained results indicate that IPTG concentration, OD, and expression time are significantly involved in the augmentation of recombinant reteplase expression. To the best of our knowledge, this is the first study to assess the combined effect of these factors on reteplase expression. Further RSM-based experiments would bring about new insights regarding the best conditions for reteplase expression.

4.
Iran J Pharm Res ; 18(2): 961-973, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31531077

RESUMEN

Streptokinase (SK) is an extracellular protein comprising 414 amino acids with considerable clinical importance as a commonly used thrombolytic agent. Due to its wide spread application and clinical importance designing more efficient SK production platforms worth investigation. In this regard, a synthetic SK gene was optimized and cloned in to pET21b plasmid for periplasmic expression. Response surface methodology was used to design a total of 20 experiments for optimization of IPTG concentration, post-induction period, and cell density of induction (OD600). The optimum levels of the selected parameters were successfully determined to be 0.28 mM for IPTG concentration, 9.889 H for post induction period, and 3.40768 for cell density (OD600). These settings result in 4.14fold increase in SK production rate of optimum expression conditions (7663 IU/mL) in comparison to the primary expression conditions (1853 IU/mL). Achieving higher yields of SK production in shake flask could lead to more cost effective industrial production of this drug which is the ultimate aim of SK production studies.

5.
Int J Biol Macromol ; 136: 352-358, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220489

RESUMEN

ß-xylosidase is an essential enzyme for breakdown of xylan to d-xylose. It has a significant potential application value for medicine, food, paper and pulp, and biofuel industries. Due to the negative consequences caused by buried free cysteine residues, mutational substitution of such residues is often accompanied by a notable increase in thermal stability. To characterize the role of cysteine residues in the structure, function and stability of Selenomonas ruminantium ß-d-Xylosidase (SXA), we prepared and evaluated wild-type and four cysteines- deficient SXA proteins. Buried cysteine residues were replaced with. In comparison with the wild-type, the Km values of the mutants remained relatively constant while their kcat values decreased. The C101V and C286V displayed higher thermal stability than the wild-type at 55 and 60 °C. Conformational changes of the secondary and tertiary structure as derived from circular dichroism and fluorescence spectroscopy revealed that changing a buried cysteine to a hydrophobic residue could lead to an increase in thermal stability with minimal perturbation of the wild-type protein structure. In addition to experimental methods, the stability of WT SXA and C101V and C286V mutants at 333 K was also studied by MD simulation. Our theoretical data had a good agreement with the experimental results.


Asunto(s)
Cisteína , Mutagénesis Sitio-Dirigida , Selenomonas/enzimología , Xilosidasas/química , Xilosidasas/metabolismo , Estabilidad de Enzimas/genética , Concentración de Iones de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Conformación Proteica , Especificidad por Sustrato , Temperatura , Xilosidasas/genética
6.
Int J Biol Macromol ; 120(Pt B): 1572-1580, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30267817

RESUMEN

EndoglucanaseII (Cel5A) of Trichoderma reesei is widely used industrially with the high catalytic efficiency, but it is not stable high temperatures. Structural comparison with the closest thermophilic endoglucanase homolog, Cel5A from Thermoascus aurantiacus, demonstrates disulfide bond differences. Replacement of Cysteine99 with Valine and Cysteine323 with Histidine by site directed mutagenesis caused elimination of two disulfide bonds. Recombinant expression in Pichia pastoris showed the catalytic efficiency (kcat/Km) increment toward CMC for single mutant enzymes, C99V and C323H, about 1.87 and 1.3 folded respectively. This indicates that the elimination of disulfide bond in substrate binding cleft around the catalytic domain of mutant EndoglucanaseII may be increased the flexibility of protein, to form a suitable E-S complex. In direct contrast with previous studies suggesting the existence of disulfide bonds increase the protein stability, the results showed mutant endoglucanase enzymes with disulfide bond reduction have higher thermal stability. The thermal stability of C99V and C323H in 80 °C were increased 2.4 and 2.34 folded, respectively. In this project, theoretical data had a good agreement with the experimental results. Because of high enzyme activity and thermal stability, both of C99V and C323H mutant have high potential suitable for different industrial applications.


Asunto(s)
Celulasa/genética , Celulasa/metabolismo , Disulfuros/química , Mutagénesis Sitio-Dirigida , Temperatura , Trichoderma/enzimología , Celulasa/química , Estabilidad de Enzimas/genética , Cinética , Modelos Moleculares , Mutación , Conformación Proteica
7.
Int J Biol Macromol ; 120(Pt B): 2448-2457, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30193917

RESUMEN

Type II l­asparaginase (l­ASNase) is an FDA approved enzyme drug with extensive applications for treatment of certain blood cancers. However, the therapeutic efficiency of this enzyme is hampered by its undesirable glutaminase activity. Given the pivotal role of this enzyme against cancer, designing engineered mutants with diminished glutaminase activity would be of great therapeutic interest. To this end, N248S mutation was selected as the potential mutation with beneficial effects. Various in silico analyses including MD simulation, molecular docking and QMMM studies were performed to assess the effects of N248S mutation on the activity of the enzyme. Thereafter, this mutation along with N248A, N248V and N248T mutations as controls were exerted in l­ASNase gene. The results from in silico analyses and experimental efforts indicated that N248S mutation is associated with the suitable l­ASNase activity, while the glutaminase activity is disturbed due to impaired interactions. It has been shown that glutamine turnover was affected much more strongly than asparagine hydrolysis. The approach of exploiting in silico tools to design mutated enzymes lead to staggering time and cost reduction. Following this strategy, we have designed a mutant l­ASNase with diminished glutaminase activity, which could be of interest for improved biomedical applications.


Asunto(s)
Asparaginasa/genética , Asparaginasa/metabolismo , Glutaminasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Asparaginasa/química , Asparaginasa/uso terapéutico , Dominio Catalítico , Estabilidad de Enzimas , Cinética , Mutagénesis Sitio-Dirigida , Teoría Cuántica
8.
Int J Biol Macromol ; 95: 248-255, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27818293

RESUMEN

Homotetrameric ß-xylosidase from Selenomonas ruminantium (SXA) is one of the most efficient enzymes known for the hydrolysis of cell wall hemicellulose. SXA shows a rapid rate of activity loss at temperatures above 50°C. In this study, we have introduced two inter-subunit disulfide bridges with one point mutation. Lys237 was chosen to be replaced with cysteine since it interacts with the same residue in the opposite subunit. While pH optimum, temperature profile and catalytic efficiency of the mutated variant were similar to the native enzyme, the mutated enzyme showed about 40% increase in thermal stability at 55°C. Our results showed that introduction of a single residue mutation in structure of SXA results in appearance of two disulfide bonds at dimer-dimer interface of the enzyme. Coarse-grained molecular dynamics (CG-MD) simulations also proved lower amounts of root mean square fluctuation (RMSF) for position 237 and potential energy for mutated SXA. Based these results, we suggest that choosing a correct residue for mutation in multi subunit proteins results in multiple site conversions which equals to several simultaneous mutations. Furthermore, CG-MD simulation in agreement with experimental methods showed higher thermostability of mutated SXA which proved applicability of this simulation for thermostability analysis.


Asunto(s)
Disulfuros/química , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Selenomonas/enzimología , Xilosidasas/química , Xilosidasas/genética , Estabilidad de Enzimas , Hidrólisis , Cinética , Mutación , Estructura Terciaria de Proteína , Especificidad por Sustrato , Temperatura , Xilosidasas/metabolismo
9.
Protein Expr Purif ; 124: 55-61, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27154901

RESUMEN

ß-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. ß-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl ß-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a ß-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications.


Asunto(s)
Proteínas Bacterianas , Clonación Molecular , Expresión Génica , Metanol/química , Pichia/crecimiento & desarrollo , Selenomonas , Xilosidasas , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Calor , Concentración de Iones de Hidrógeno , Pichia/genética , Selenomonas/enzimología , Selenomonas/genética , Xilosidasas/biosíntesis , Xilosidasas/genética
10.
Jundishapur J Microbiol ; 8(12): e27553, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26870311

RESUMEN

BACKGROUND: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. OBJECTIVES: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. MATERIALS AND METHODS: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. RESULTS: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. CONCLUSIONS: By optimization of recombinant phytase expression in shake flask culture, we concluded that P. pastoris was a suitable host for high-level expression of phytase and it can possess high potential for industrial applications.

11.
Cancer Invest ; 27(5): 568-74, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19219652

RESUMEN

Transforming growth factor-beta (TGF-beta) superfamily regulates matrix metalloproteinases (MMP), which intrinsically regulate various cell behaviors leading to metastasis. We investigated the effect of TGF-beta(2) on MMP-2 regulation in human bladder carcinoma cell line 5637. Zymography, ELISA, and real-time polymerase chain reaction revealed that TGF-beta(2) stimulated MMP-2 production, but the transcription of its gene remained unchanged. Wortmannin could not inhibit MMP-2 secretion and activity and conversely the amount of the protein and its enzymatic activity were increased. These data suggest that TGF-beta(2) increased MMP-2 at the posttranscriptional level and this upregulation was independent of phosphatidylinositol 3-kinase signaling pathway.


Asunto(s)
Metaloproteinasa 2 de la Matriz/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Androstadienos/farmacología , Ensayo de Inmunoadsorción Enzimática , Humanos , Metaloproteinasa 2 de la Matriz/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Crecimiento Transformador beta2/genética , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...