Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8011): 307-310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38710931

RESUMEN

Despite its Earth-like size and source material1,2, Venus is extremely dry3,4, indicating near-total water loss to space by means of hydrogen outflow from an ancient, steam-dominated atmosphere5,6. Such hydrodynamic escape likely removed most of an initial Earth-like 3-km global equivalent layer (GEL) of water but cannot deplete the atmosphere to the observed 3-cm GEL because it shuts down below about 10-100 m GEL5,7. To complete Venus water loss, and to produce the observed bulk atmospheric enrichment in deuterium of about 120 times Earth8,9, nonthermal H escape mechanisms still operating today are required10,11. Early studies identified these as resonant charge exchange12-14, hot oxygen impact15,16 and ion outflow17,18, establishing a consensus view of H escape10,19 that has since received only minimal updates20. Here we show that this consensus omits the most important present-day H loss process, HCO+ dissociative recombination. This process nearly doubles the Venus H escape rate and, consequently, doubles the amount of present-day volcanic water outgassing and/or impactor infall required to maintain a steady-state atmospheric water abundance. These higher loss rates resolve long-standing difficulties in simultaneously explaining the measured abundance and isotope ratio of Venusian water21,22 and would enable faster desiccation in the wake of speculative late ocean scenarios23. Design limitations prevented past Venus missions from measuring both HCO+ and the escaping hydrogen produced by its recombination; future spacecraft measurements are imperative.

2.
Clin Oncol (R Coll Radiol) ; 36(1): e11-e19, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37973477

RESUMEN

AIMS: Androgen deprivation therapy (ADT), usually achieved with luteinising hormone releasing hormone analogues (LHRHa), is central to prostate cancer management. LHRHa reduce both testosterone and oestrogen and are associated with significant long-term toxicity. Previous use of oral oestrogens as ADT was curtailed because of cardiovascular toxicity. Transdermal oestrogen (tE2) patches are a potential alternative ADT, supressing testosterone without the associated oestrogen-depletion toxicities (osteoporosis, hot flushes, metabolic abnormalities) and avoiding cardiovascular toxicity, and we here describe their evaluation in men with prostate cancer. MATERIALS AND METHODS: The PATCH (NCT00303784) adaptive trials programme (incorporating recruitment through the STAMPEDE [NCT00268476] platform) is evaluating the safety and efficacy of tE2 patches as ADT for men with prostate cancer. An initial randomised (LHRHa versus tE2) phase II study (n = 251) with cardiovascular toxicity as the primary outcome measure has expanded into a phase III evaluation. Those with locally advanced (M0) or metastatic (M1) prostate cancer are eligible. To reflect changes in both management and prognosis, the PATCH programme is now evaluating these cohorts separately. RESULTS: Recruitment is complete, with 1362 and 1128 in the M0 and M1 cohorts, respectively. Rates of androgen suppression with tE2 were equivalent to LHRHa, with improved metabolic parameters, quality of life and bone health indices (mean absolute change in lumbar spine bone mineral density of -3.0% for LHRHa and +7.9% for tE2 with an estimated difference between arms of 9.3% (95% confidence interval 5.3-13.4). Importantly, rates of cardiovascular events were not significantly different between the two arms and the time to first cardiovascular event did not differ between treatment groups (hazard ratio 1.11, 95% confidence interval 0.80-1.53; P = 0.54). Oncological outcomes are awaited. FUTURE: Efficacy results for the M0 cohort (primary outcome measure metastases-free survival) are expected in the final quarter of 2023. For M1 patients (primary outcome measure - overall survival), analysis using restricted mean survival time is being explored. Allied translational work on longitudinal samples is underway.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Estradiol , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Calidad de Vida , Estrógenos , Testosterona
3.
J Geophys Res Space Phys ; 127(4): e2021JA030238, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35866072

RESUMEN

Discrete aurora at Mars, characterized by their small spatial scale and tendency to form near strong crustal magnetic fields, are emissions produced by particle precipitation into the Martian upper atmosphere. Since 2014, Mars Atmosphere and Volatile EvolutioN's (MAVEN's) Imaging Ultraviolet Spectrograph (IUVS) has obtained a large collection of UV discrete aurora observations during its routine periapsis nightside limb scans. Initial analysis of these observations has shown that, near the strongest crustal magnetic fields in the southern hemisphere, the IUVS discrete aurora detection frequency is highly sensitive to the interplanetary magnetic field (IMF) clock angle. However, the role of other solar wind properties in controlling the discrete aurora detection frequency has not yet been determined. In this work, we use the IUVS discrete aurora observations, along with MAVEN observations of the upstream solar wind, to determine how the discrete aurora detection frequency varies with solar wind dynamic pressure, IMF strength, and IMF cone angle. We find that, outside of the strong crustal field region (SCFR) in the southern hemisphere, the aurora detection frequency is relatively insensitive to the IMF orientation, but significantly increases with solar wind dynamic pressure, and moderately increases with IMF strength. Interestingly however, although high solar wind dynamic pressures cause more aurora to form, they have little impact on the brightness of the auroral emissions. Alternatively, inside the SCFR, the detection frequency is only moderately dependent on the solar wind dynamic pressure, and is much more sensitive to the IMF clock and cone angles. In the SCFR, aurora are unlikely to occur when the IMF points near the radial or anti-radial directions when the cone angle (arccos(B x /|B|)) is less than 30° or between 120° and 150°. Together, these results provide the first comprehensive characterization of how upstream solar wind conditions affect the formation of discrete aurora at Mars.

4.
Space Sci Rev ; 218(1): 4, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35194256

RESUMEN

The Emirates Mars Mission (EMM) was launched to Mars in the summer of 2020, and is the first interplanetary spacecraft mission undertaken by the United Arab Emirates (UAE). The mission has multiple programmatic and scientific objectives, including the return of scientifically useful information about Mars. Three science instruments on the mission's Hope Probe will make global remote sensing measurements of the Martian atmosphere from a large low-inclination orbit that will advance our understanding of atmospheric variability on daily and seasonal timescales, as well as vertical atmospheric transport and escape. The mission was conceived and developed rapidly starting in 2014, and had aggressive schedule and cost constraints that drove the design and implementation of a new spacecraft bus. A team of Emirati and American engineers worked across two continents to complete a fully functional and tested spacecraft and bring it to the launchpad in the middle of a global pandemic. EMM is being operated from the UAE and the United States (U.S.), and will make its data freely available.

5.
Science ; 350(6261): aad0313, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26542577

RESUMEN

Planetary auroras reveal the complex interplay between an atmosphere and the surrounding plasma environment. We report the discovery of low-altitude, diffuse auroras spanning much of Mars' northern hemisphere, coincident with a solar energetic particle outburst. The Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, detected auroral emission in virtually all nightside observations for ~5 days, spanning nearly all geographic longitudes. Emission extended down to ~60 kilometer (km) altitude (1 microbar), deeper than confirmed at any other planet. Solar energetic particles were observed up to 200 kilo--electron volts; these particles are capable of penetrating down to the 60 km altitude. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit auroras more globally than Earth.

6.
Science ; 350(6261): aad0210, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26542576

RESUMEN

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.

7.
Science ; 350(6261): aad0459, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26542579

RESUMEN

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA