Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 36(35): 10471-10489, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32787019

RESUMEN

We present a comprehensive computational physics-based study of the influence of surface wettability on the displacement behavior of a droplet in a three-dimensional bifurcating channel. Various surface wettability configurations for the daughter branches are considered to gain insight into the wettability-capillarity interaction. Also, the influence of initial droplet size on the splitting dynamics for different wettability configurations is investigated. Time evolution of the droplet displacement behavior in the bifurcating channel is discussed for different physicochemical parameters including capillary number and wettability. Three distinct flow regimes are identified as the droplet interacts with the bifurcating tip of the channel, namely, splitting, nonsplitting, and oscillating regimes. Furthermore, the occurrence of Rayleigh-Plateau instability in different wettability scenarios is discussed. Additionally, the intricacies associated with the droplet dynamics are elucidated through the temporal evolution of the droplet surface area and mass outflow of the continuous phase. A flow regime map based on the capillary number and wettability contrast of the daughter branches is proposed for a comprehensive description of the droplet dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...