Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Drug Deliv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38243940

RESUMEN

INTRODUCTION: Zeolitic imidazolate frameworks (ZIFs) play a crucial role among metalorganic frameworks due to their highly desirable properties, including high surface area, appropriate pore size, and excellent thermal and chemical stability. METHOD: In this study, ZIF-8 loaded with aspirin and coated using pectin (ZIF-8/Asp@Pectin) was utilized as a suitable and effective platform for the drug delivery system. The preparation of this coated MOF followed environmentally friendly methods, and aspirin was successfully loaded. RESULT: Characterization of the obtained ZIF-8/Asp@Pectin was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FT-IR) spectroscopy, and BET analysis. CONCLUSION: The release of aspirin from ZIF-8/Asp@Pectin was studied using UV-Vis spectroscopy at 258 nm under in vitro conditions in HCl and PBS buffer solutions.

2.
Sci Rep ; 13(1): 22913, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129414

RESUMEN

In this study, new magnetic reduced graphene oxide aerogel/HKUST-1 nanocomposite was designed and synthesized given the transformation of graphene oxide sheets to three-dimensional reduced graphene oxide aerogel, the in-situ magnetization of aerogel substrate, and the in-situ formation of HKUST-1 particles. Apart from characterizing the chemistry and structure of the designed magnetic nanocomposite (FT-IR, EDX, ICP, FE-SEM, DLS, XRD, VSM, and TG analyses), its catalytic performance was evaluated in the one-pot synthesis of biologically active 1,8-dioxo-decahydroacridine and polyhydroquinoline derivatives. The combination of magnetized reduced graphene oxide aerogel and HKUST-1 in the form of a new heterogeneous magnetic nanocatalyst was accompanied by a high synergetic catalytic effect in the symmetric and unsymmetrical Hantzsch condensation reactions. Compared to previous research studies, the pharmaceutical 1,8-dioxo-decahydroacridine and polyhydroquinoline derivatives can be synthesized using a partial amount of this nanocatalyst with a high percentage of yields in a short reaction time.

3.
RSC Adv ; 13(45): 31897-31907, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37920197

RESUMEN

The computational analysis of drug release from metal-organic frameworks (MOFs), specifically UiO-66, is the primary focus of this research. MOFs are recognized as nanocarriers due to their crystalline structure, porosity, and potential for added functionalities. The research examines the release patterns of three drugs: temozolomide, alendronate, and 5-fluorouracil, assessing various factors such as the drugs' distance from the UiO-66 centers, the interaction of drug functional groups with Zr metal ions, and the drug density throughout the nanocarrier. Findings reveal that 5-fluorouracil is located furthest from the UiO-66 center and exhibits the highest positive energy compared to the other drugs. Alendronate's density is observed to shift to the carrier surface, while 5-fluorouracil's density significantly decreases within the system. The drug density diminishes as the distance from the UiO-66 center of mass increases, suggesting a stronger positive interaction between the drugs and the nanocarrier. Moreover, Monte Carlo calculations were employed to load drugs onto the UiO-66 surface, leading to a substantial release of 5-fluorouracil from UiO-66. Quantum and Monte Carlo adsorption localization calculations were also conducted to gather data on the compounds' energy and geometry. This research underscores the potential of MOFs as nanocarriers for drug delivery and highlights the crucial role of temperature in regulating drug release from UiO-66. It provides insights into the complex dynamics of drug release and the factors influencing it, thereby emphasizing the promise of UiO-66 as a viable candidate for drug delivery. This work contributes to our understanding of UiO-66's role and sets the stage for improved performance optimization in the cancer treatment.

4.
RSC Adv ; 13(39): 27088-27105, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37701273

RESUMEN

A cost-effective and convenient method for supporting of Cu(ii) nanoparticles on a modified chitosan backbone containing urea and thiourea bridges using thiosemicarbazide (TS), pyromellitic dianhydride (PMDA) and toluene-2,4-diisocyanate (TDI) linkers was designed. The prepared supramolecular (CS-TDI-PMDA-TS-Cu(ii)) nanocomposite was characterized by using Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), thermogravimetry/differential thermogravimetry analysis (TGA/DTA), energy-dispersive X-ray spectroscopy (EDS), EDS elemental mapping and X-ray diffraction (XRD). The obtained supramolecular CS-TDI-PMDA-TS-Cu(ii) nanomaterial was demonstrated to act as a multifunctional nanocatalyst for promoting of multicomponent cascade Knoevenagel condensation/click 1,3-dipolar azide-nitrile cycloaddition reactions very efficiently between aromatic aldehydes, sodium azide and malononitrile under solvent-free conditions and affording the corresponding (E)-2-(1H-tetrazole-5-yl)-3-arylacrylenenitrile derivatives. Low catalyst loading, working under solvent-free conditions and short reaction time as well as easy preparation and recycling, and reuse of the catalyst for five consecutive cycles without considerable decrease in its catalytic efficiency make it a suitable candidate for the catalytic reactions promoted by Cu species.

5.
Nanoscale Adv ; 5(13): 3463-3484, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37383074

RESUMEN

Supramolecular palladium(ii) supported on modified chitosan by dl-methionine using an ethylenediaminetetraacetic acid linker (Pd@MET-EDTA-CS) was designed and prepared through a simple procedure. The structure of this novel supramolecular nanocomposite was characterized by different spectroscopic, microscopic and analytical techniques including FTIR, EDX, XRD, FESEM, TGA, DRS, TEM, AA, and BET. The obtained bio-based nanomaterial was successfully investigated, as a highly efficient and green heterogeneous catalyst, in the Heck cross-coupling reaction (HCR) for the synthesis of various valuable biologically active cinnamic acid ester derivatives from the corresponding aryl halides using several acrylates. Indeed, aryl halides containing I or Br survived very well under optimized conditions to afford the corresponding products compared to the substrates with Cl. The prepared Pd@MET-EDTA-CS nanocatalyst promoted the HCR in high to excellent yields and short reaction times with minimum Pd loading (0.0027 mol%) on its structure as well as without any leaching occurring during the process. The recovery of the catalyst was performed by simple filtration and the catalytic activity remained approximately constant after five runs for the model reaction.

6.
RSC Adv ; 13(28): 19243-19256, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37377867

RESUMEN

In this work, a new series of quinoline-quinazolinone-thioacetamide derivatives 9a-p were designed using a combination of effective pharmacophores of the potent α-glucosidase inhibitors. These compounds were synthesized by simple chemical reactions and evaluated for their anti-α-glucosidase activity. Among the tested compounds, compounds 9a, 9f, 9g, 9j, 9k, and 9m demonstrated significant inhibition effects in comparison to the positive control acarbose. Particularly, compound 9g with inhibitory activity around 83-fold more than acarbose exhibited the best anti-α-glucosidase activity. Compound 9g showed a competitive type of inhibition in the kinetic study, and the molecular simulation studies demonstrated that this compound with a favorable binding energy occupied the active site of α-glucosidase. Furthermore, in silico ADMET studies of the most potent compounds 9g, 9a, and 9f were performed to predict their drug-likeness, pharmacokinetic, and toxicity properties.

7.
RSC Adv ; 13(24): 16584-16601, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37274415

RESUMEN

In this study, magnetic polyborate nanoparticles (MPBNPs) were prepared via a simple procedure from boric acid by using ball-milling and then characterized by various spectroscopic, microscopic and analytical methods including FT-IR, EDX, XRD, FESEM, VSM and TGA analysis. The obtained MPBNPs were further explored, as a green and highly efficient catalyst, in the multi-component synthesis of a wide range of tetra-substituted imidazoles from cascade cyclocondensation as well as in situ air oxidation of benzil or benzoin, aromatic aldehydes, primary amine and ammonium acetate in EtOH, as a green solvent, under reflux conditions. Additionally, environmentally friendly conditions for the preparation of the catalyst by the use of non-toxic reactants, facile procedure and high to excellent yields of the desired products as well as the use of a green solvent are some advantages of this new protocol.

8.
Heliyon ; 9(6): e16315, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37260895

RESUMEN

Trimesic acid-functionalized chitosan (Cs/ECH-TMA) material was prepared through a simple procedure by using inexpensive and commercially available chitosan (Cs), epichlorohydrin (ECH) linker and trimesic acid (TMA). The obtained bio-based Cs/ECH-TMA material was characterized using energy-dispersive X-ray (EDX) and Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis. The Cs/ECH-TMA material was successfully used, as a multifunctional heterogeneous and sustainable catalyst, for efficient and expeditious synthesis of medicinally important polyhydroquinoline (PHQ) and polyhydroacridinedione (PHA) scaffolds through the Hantzsch condensation in a one-pot reaction. Indeed, the heterogeneous Cs/ECH-TMA material can be considered as a synergistic multifunctional organocatalyst due to the presence of a large number of acidic active sites in its structure as well as hydrophilicity. Both PHQs and PHAs were synthesized in the presence of biodegradable heterogeneous Cs/ECH-TMA catalytic system from their corresponding substrates in EtOH under reflux conditions and high to quantitative yields. The Cs/ECH-TMA catalyst is recyclable and can be reused at least four times without significant loss of its catalytic activity.

9.
Sci Rep ; 13(1): 8016, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198267

RESUMEN

In this work, D-(-)-α-phenylglycine (APG)-functionalized magnetic nanocatalyst (Fe3O4@SiO2@PTS-APG) was designed and successfully prepared in order to implement the principles of green chemistry for the synthesis of polyhydroquinoline (PHQ) and 1,4-dihydropyridine (1,4-DHP) derivatives under ultrasonic irradiation in EtOH. After preparing of the nanocatalyst, its structure was confirmed by different spectroscopic methods or techniques including Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and thermal gravimetric analysis (TGA). The performance of Fe3O4@SiO2@PTS-APG nanomaterial, as a heterogeneous catalyst for the Hantzsch condensation, was examined under ultrasonic irradiation and various conditions. The yield of products was controlled under various conditions to reach more than 84% in just 10 min, which indicates the high performance of the nanocatalyst along with the synergistic effect of ultrasonic irradiation. The structure of the products was identified by melting point as well as FTIR and 1H NMR spectroscopic methods. The Fe3O4@SiO2@PTS-APG nanocatalyst is easily prepared from commercially available, lower toxic and thermally stable precursors through a cost-effective, highly efficient and environmentally friendly procedure. The advantages of this method include simplicity of the operation, reaction under mild conditions, the use of an environmentally benign irradiation source, obtaining pure products with high efficiency in short reaction times without using a tedious path, which all of them address important green chemistry principles. Finally, a reasonable mechanism is proposed for the preparation of polyhydroquinoline (PHQ) and 1,4-dihydropyridine (1,4-DHP) derivatives in the presence of Fe3O4@SiO2@PTS-APG bifunctional magnetic nanocatalyst.

10.
Nanoscale Adv ; 5(9): 2621-2638, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37143802

RESUMEN

In this research, a novel supramolecular Pd(ii) catalyst supported on chitosan grafted by l-asparagine and an EDTA linker, named Pd@ASP-EDTA-CS, was prepared for the first time. The structure of the obtained multifunctional Pd@ASP-EDTA-CS nanocomposite was appropriately characterized by various spectroscopic, microscopic, and analytical techniques, including FTIR, EDX, XRD, FESEM, TGA, DRS, and BET. The Pd@ASP-EDTA-CS nanomaterial was successfully employed, as a heterogeneous catalytic system, in the Heck cross-coupling reaction (HCR) to afford various valuable biologically-active cinnamic acid derivatives in good to excellent yields. Different aryl halides containing I, Br and even Cl were used in HCR with various acrylates for the synthesis of corresponding cinnamic acid ester derivatives. The catalyst shows a variety of advantages including high catalytic activity, excellent thermal stability, easy recovery by simple filtration, more than five cycles of reusability with no significant decrease in its efficacy, biodegradability, and excellent results in the HCR using low-loaded Pd on the support. In addition, no leaching of Pd into the reaction medium and the final products was observed.

11.
Sci Rep ; 13(1): 8675, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248371

RESUMEN

A novel magnetic heterogeneous catalyst was synthesized through the immobilization of copper ions onto the l-arginine functionalized CuFe2O4@SiO2. The prepared catalyst was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), and Energy Dispersive X-Ray spectroscopy (EDX). The resulting catalyst was used in the ultrasonic-assisted synthesis of 1,2,3-triazoles via a one-pot three-component reaction of alkynes, alkyl halides, and sodium azides under green conditions within a short time. The catalyst reusability was investigated after five cycles and no significant loss of activity was observed.

12.
Heliyon ; 9(2): e13522, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36852068

RESUMEN

4H-pyrans have been prepared through a mechanochemical multicomponent reaction (MCR) of different aldehydes, malononitrile, and various 1,3-dicarbonyl compounds, catalyzed by an amine-functionalized metal-organic framework (MOF) Cu2(NH2-BDC)2(DABCO) as a heterogeneous catalyst with good to excellent yields.

13.
Sci Rep ; 13(1): 2803, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797437

RESUMEN

Ball-milled seashells, as a nano-biocomposite catalyst and natural source of CaCO3 in its aragonite microcrystalline form with fixed CO2, was optimized for the synthesis of isoamyl acetate (3-methylbutyl ethanoate) by response surface methodology with a five-level three-factor rotatable circumscribed central composite design. The seashells nano-biocomposite has proved to be an excellent heterogeneous multifunctional catalyst for the green and environmentally-benign synthesis of isoamyl acetate from acetic acid and isoamyl alcohol under solvent-free conditions. A high yield of 91% was obtained under the following optimal conditions: molar ratio of alcohol: acetic acid (1:3.7), catalyst loading (15.7 mg), the reaction temperature (98 °C), and the reaction time (219 min). The outstanding advantages of this protocol are the use of an inexpensive, naturally occurring and easily prepared nano-biocomposite material having appropriate thermal stability and without any modifications using hazardous reagents, lower catalyst loading and reaction temperature, no use of corrosive Bronsted acids as well as toxic azeotropic solvents or water adsorbents, and simplicity of the procedure.

14.
Sci Rep ; 13(1): 401, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624142

RESUMEN

This article describes supramolecular Fe3O4/SiO2 decorated trimesic acid-melamine (Fe3O4/SiO2-TMA-Me) nanocomposite that can be prepared with features that combine properties of different materials to fabricate a structurally unique hybrid material. In particular, we have focused on design, synthesis and evaluation a heterogeneous magnetic organocatalyst containing acidic functional-groups for the synthesis of biologically important imidazole derivatives in good to excellent yields. The introduced Fe3O4/SiO2-TMA-Me nanomaterial was characterized by different techniques such as FTIR, XRD, EDX, FESEM, TEM, TGA and DTA. As a noteworthy point, the magnetic catalytic system can be recycled and reused for more than seven consecutive runs while its high catalytic activity remains under the optimized conditions.


Asunto(s)
Nanocompuestos , Nitroimidazoles , Dióxido de Silicio , Imidazoles
15.
J Biomol Struct Dyn ; 41(21): 11551-11563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36597916

RESUMEN

A series of molecular dynamics simulations were performed on 5-fluorouracil (5-Fu), Alendronate (Ald), and Temozolomide (TMZ) anticancer drugs in the presence and absence of ß-cyclodextrin (ßCD) as a carrier. Thermodynamic investigations showed that the van der Waals interaction energy was dominant in loading all drugs inside the ßCD cavity. The sum of the interaction energies illustrated that the highest affinity was related to Ald (-136.5 kJ/mol), which in turn was due to the presence of bulky and charged atoms of phosphorus and oxygen, although TMZ (-115.92 kJ/mol) showed a very high affinity as well. At the same time, the hydrogen bond analysis also represented that Ald had the most hydrogen bond (1.97) with the highest half-life (3.13 ps) with ßCD. Investigation of the root mean fluctuation (RMSF) indicated that all the drugs had a relatively rigid structure and maintain this rigidity during loading in the ßCD cavity, and in the meantime, Ald was slightly more flexible than 5-Fu and TMZ. The area of ​the primary hydroxyl rim decreased in all drug-containing systems, which in turn was caused by the attractive interaction of drugs with oxygens in the primary hydroxyl rim. Especially for those drugs that were able to penetrate to the end of the primary hydroxyl rim of the ßCD, that means TMZ and 5-Fu. Meanwhile, due to the lack of Ald penetration to the end of the primary hydroxyl rim, the area change in the Ald-containing system was less than in the two others.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Neoplasias , beta-Ciclodextrinas , Humanos , Simulación de Dinámica Molecular , beta-Ciclodextrinas/química , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Fluorouracilo/química
16.
Sci Rep ; 12(1): 18139, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307538

RESUMEN

In this work, a new periodic mesoporous organosilica with urea-bridges produced by the reaction of (3-aminopropyl)triethoxysilane and toluene-2,4-diisocyanate (APS-TDU-PMO) is introduced. The obtained APS-TDU-PMO was found to be an appropriate support for loading of Cu(II) nanoparticles to afford supramolecular Cu@APS-TDU-PMO nanocomposite. Uniformity and mesoporosity of both synthesized nanomaterials including APS-TDU-PMO and Cu@APS-TDU-PMO were proved by different spectroscopic, microscopic or analytical techniques including FTIR, EDX, XRD, FESEM, TEM, BET, TGA and DTA. Furthermore, the prepared Cu@APS-TDU-PMO nanomaterial was also used, as a heterogeneous and recyclable catalyst, for the synthesis of tetrazole derivatives through cascade condensation, concerted cycloaddition and tautomerization reactions. Indeed, the main advantages of this Cu@APS-TDU-PMO is its simple preparation and high catalytic activity as well as proper surface area which enable it to work under solvent-free conditions. Also, the introduced Cu@APS-TDU-PMO heterogeneous catalyst showed good stability and reusability for six consecutive runs to address more green chemistry principles.


Asunto(s)
Nanocompuestos , Nanopartículas , Catálisis , Nanopartículas/química , Tetrazoles , Urea , Cobre , Nanopartículas del Metal
17.
RSC Adv ; 12(34): 21742-21759, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36091190

RESUMEN

In this study, new l-asparagine grafted on 3-aminopropyl-modified Fe3O4@SiO2 core-shell magnetic nanoparticles using the EDTA linker (Fe3O4@SiO2-APTS-EDTA-asparagine) was prepared and its structures properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques including FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The Fe3O4@SiO2-APTS-EDTA-asparagine core-shell nanomaterial was found, as a highly efficient multifunctional and recoverable organocatalyst, to promote the efficient synthesis of a wide range of biologically-active 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. It was proved that Fe3O4@SiO2-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermal and magnetic stability, specific morphology and acidic sites with appropriate geometry, can activate the Biginelli reaction components. Moreover, the environmental-friendliness and nontoxic nature of the catalyst, cost effectiveness, low catalyst loading, easy separation of the catalyst from the reaction mixture and short reaction time are some of the remarkable advantages of this green protocol.

18.
Sci Rep ; 12(1): 10723, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750767

RESUMEN

ZnO nanoparticles embedded in a magnetic isocyanurate-based periodic mesoporous organosilica (Fe3O4@PMO-ICS-ZnO) were prepared through a modified environmentally-benign procedure for the first time and properly characterized by appropriate spectroscopic and analytical methods or techniques used for mesoporous materials. The new thermally stable Fe3O4@PMO-ICS-ZnO nanomaterial with proper active sites and surface area as well as uniform particle size was investigated for the synthesis of medicinally important tetrazole derivatives through cascade condensation and concerted 1,3-cycloaddition reactions as a representative of the Click Chemistry concept. The desired 5-substituted-1H-tetrazole derivatives were smoothly prepared in high to quantitative yields and good purity in EtOH under reflux conditions. Low catalyst loading, short reaction time and the use of green solvents such as EtOH and water instead of carcinogenic DMF as well as easy separation and recyclability of the catalyst for at least five consecutive runs without significant loss of its activity are notable advantages of this new protocol compared to other recent introduced procedures.


Asunto(s)
Óxido de Zinc , Catálisis , Fenómenos Magnéticos , Tetrazoles
19.
Sci Rep ; 12(1): 8642, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606381

RESUMEN

In this research, cellulose grafted to chitosan by EDTA (Cs-EDTA-Cell) bio-based material is reported and characterized by a series of various methods and techniques such as FTIR, DRS-UV-Vis, TGA, FESEM, XRD and EDX analysis. In fact, the Cs-EDTA-Cell network is more thermally stable than pristine cellulose or chitosan. There is a plenty of both acidic and basic sites on the surface of this bio-based and biodegradable network, as a multifunctional organocatalyst, to proceed three-component synthesis of 2-amino-4H-pyran derivatives at room temperature in EtOH. The Cs-EDTA-Cell nanocatalyst can be easily recovered from the reaction mixture by using filtration and reused for at least five times without significant decrease in its catalytic activity. In general, the Cs-EDTA-Cell network, as a heterogeneous catalyst, demonstrated excellent catalytic activity in an environmentally-benign solvent to afford desired products in short reaction times and required simple experimental and work-up procedure compared to many protocols using similar catalytic systems.


Asunto(s)
Quitosano , Catálisis , Celulosa , Ácido Edético/análogos & derivados , Piranos
20.
J Mol Graph Model ; 113: 108147, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35219082

RESUMEN

Targeted drug delivery systems are effective ways to reduce side effects and enhance the therapeutic efficacy of drugs. Metal-organic frameworks are a new class of porous materials that have been recently used as high-performance nanocarriers in medical applications, such as drug storage and delivery due to high internal surface area, high porosity, low toxicity, high payloads, controlled drug release, their exceptional biocompatibility, and biodegradability. In this study, the loading of anti-cancer drugs Temozolomide, Alendronate, and 5-Fluorouracil inside UiO-66 nanocarrier cavities at the atomic level and different concentrations of the drug were investigated using the molecular dynamics simulation method. Drug interaction energies with UiO-66, two-dimensional density map, and drug mobility in all systems were investigated. It was found that all drugs in higher concentration systems have higher loads than less concentrated systems. Among the drugs used, Temozolomide was located closer to the center of UiO-66 which indicated more negative interaction energy. Therefore, Temozolomide has a more thermodynamic tendency to load inside the UiO-66 cavities than the other studied drugs. Two-dimensional density study showed that all drugs were mainly loaded on metal centers. Temozolomide and Alendronate were loaded on inner centers, although 5-Fluorouracil showed a higher tendency to load on surface metal centers. From studying the mobility of drugs, Temozolomide was less mobile than the other two drugs due to its stronger interaction with UiO-66.


Asunto(s)
Antineoplásicos , Compuestos Organometálicos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Estructuras Metalorgánicas , Simulación de Dinámica Molecular , Ácidos Ftálicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...