Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
J Exp Med ; 221(2)2024 Feb 05.
Article En | MEDLINE | ID: mdl-38226976

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , Humans , ErbB Receptors , Adipose Tissue , Cell Cycle
2.
Front Immunol ; 14: 1232511, 2023.
Article En | MEDLINE | ID: mdl-37908367

The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is a cutting-edge technology that enables researchers to assess genome-wide chromatin accessibility and to characterize cell type specific gene-regulatory programs. Recent technological progress allows for using this technology also on the single-cell level. In this article, we describe the whole value chain from the isolation of T cells from murine tissues to a complete bioinformatic analysis workflow. We start with methods for isolating scATAC-seq-ready CD4+ T cells from murine tissues such as visceral adipose tissue, skin, colon, and secondary lymphoid tissues such as the spleen. We describe the preparation of nuclei and quality control parameters during library preparation. Based on publicly available sequencing data that was generated using these protocols, we describe a step-by-step bioinformatic analysis pipeline for data pre-processing and downstream analysis. Our analysis workflow will follow the R-based bioinformatics framework ArchR, which is currently well established for scATAC-seq datasets. All in all, this work serves as a one-stop shop for generating and analyzing chromatin accessibility landscapes in T cells.


CD4-Positive T-Lymphocytes , Chromatin , Animals , Mice , Chromatin/genetics , Chromatin/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cell Nucleus , Chromatin Immunoprecipitation Sequencing , Genome
3.
Front Immunol ; 14: 1241283, 2023.
Article En | MEDLINE | ID: mdl-37901204

Single-cell gene expression analysis using sequencing (scRNA-seq) has gained increased attention in the past decades for studying cellular transcriptional programs and their heterogeneity in an unbiased manner, and novel protocols allow the simultaneous measurement of gene expression, T-cell receptor clonality and cell surface protein expression. In this article, we describe the methods to isolate scRNA/TCR-seq-compatible CD4+ T cells from murine tissues, such as skin, spleen, and lymph nodes. We describe the processing of cells and quality control parameters during library preparation, protocols for multiplexing of samples, and strategies for sequencing. Moreover, we describe a step-by-step bioinformatic analysis pipeline from sequencing data generated using these protocols. This includes quality control, preprocessing of sequencing data and demultiplexing of individual samples. We perform quantification of gene expression and extraction of T-cell receptor alpha and beta chain sequences, followed by quality control and doublet detection, and methods for harmonization and integration of datasets. Next, we describe the identification of highly variable genes and dimensionality reduction, clustering and pseudotemporal ordering of data, and we demonstrate how to visualize the results with interactive and reproducible dashboards. We will combine different analytic R-based frameworks such as Bioconductor and Seurat, illustrating how these can be interoperable to optimally analyze scRNA/TCR-seq data of CD4+ T cells from murine tissues.


CD4-Positive T-Lymphocytes , Software , Mice , Animals , Membrane Proteins , Receptors, Antigen, T-Cell/genetics , Clone Cells , Gene Expression
4.
Front Immunol ; 13: 1082055, 2022.
Article En | MEDLINE | ID: mdl-36569861

Regulatory T cells in non-lymphoid tissues are not only critical for maintaining self-tolerance, but are also important for promoting organ homeostasis and tissue repair. It is proposed that the generation of tissue Treg cells is a stepwise, multi-site process, accompanied by extensive epigenome remodeling, finally leading to the acquisition of unique tissue-specific epigenetic signatures. This process is initiated in the thymus, where Treg cells acquire core phenotypic and functional properties, followed by a priming step in secondary lymphoid organs that permits Treg cells to exit the lymphoid organs and seed into non-lymphoid tissues. There, a final specialization process takes place in response to unique microenvironmental cues in the respective tissue. In this review, we will summarize recent findings on this multi-site tissue Treg cell differentiation and highlight the importance of epigenetic remodeling during these stepwise events.


Immune Tolerance , T-Lymphocytes, Regulatory , Cell Differentiation , Self Tolerance , Epigenesis, Genetic
5.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Article En | MEDLINE | ID: mdl-36161919

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Biosensing Techniques , Cell Engineering , Cell- and Tissue-Based Therapy , Inflammation , T-Lymphocytes, Regulatory , Animals , CD28 Antigens/metabolism , Humans , Inflammation/therapy , Ligands , Lymphotoxin beta Receptor/metabolism , Mice , Receptors, Antigen, T-Cell/metabolism , Receptors, Tumor Necrosis Factor/metabolism , T-Lymphocytes, Regulatory/transplantation , Tumor Necrosis Factor-alpha
6.
Front Immunol ; 13: 991671, 2022.
Article En | MEDLINE | ID: mdl-36119090

The first wave of Foxp3+ regulatory T cells (Tregs) generated in neonates is critical for the life-long prevention of autoimmunity. Although it is widely accepted that neonates are highly susceptible to infections, the impact of neonatal infections on this first wave of Tregs is completely unknown. Here, we challenged newborn Treg fate-mapping mice (Foxp3eGFPCreERT2xROSA26STOP-eYFP) with the Toll-like receptor (TLR) agonists LPS and poly I:C to mimic inflammatory perturbations upon neonatal bacterial or viral infections, respectively, and subsequently administrated tamoxifen during the first 8 days of life to selectively label the first wave of Tregs. Neonatally-tagged Tregs preferentially accumulated in non-lymphoid tissues (NLTs) when compared to secondary lymphoid organs (SLOs) irrespective of the treatment. One week post challenge, no differences in the frequency and phenotypes of neonatally-tagged Tregs were observed between challenged mice and untreated controls. However, upon aging, a decreased frequency of neonatally-tagged Tregs in both NLTs and SLOs was detected in challenged mice when compared to untreated controls. This decrease became significant 12 weeks post challenge, with no signs of altered Foxp3 stability. Remarkably, this late decrease in the frequency of neonatally-tagged Tregs only occurred when newborns were challenged, as treating 8-days-old mice with TLR agonists did not result in long-lasting alterations of the first wave of Tregs. Combined single-cell T cell receptor (TCR)-seq and RNA-seq revealed that neonatal inflammatory perturbations drastically diminished TCR diversity and long-lastingly altered the transcriptome of neonatally-tagged Tregs, exemplified by lower expression of Tigit, Foxp3, and Il2ra. Together, our data demonstrate that a single, transient encounter with a pathogen in early life can have long-lasting consequences for the first wave of Tregs, which might affect immunological tolerance, prevention of autoimmunity, and other non-canonical functions of tissue-resident Tregs in adulthood.


T-Lymphocytes, Regulatory , Transcriptome , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Lipopolysaccharides/metabolism , Mice , Poly I/metabolism , Receptors, Antigen, T-Cell/metabolism , Tamoxifen/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
7.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Article En | MEDLINE | ID: mdl-34910301

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Autoimmune Diseases/immunology , Flow Cytometry , Infections/immunology , Neoplasms/immunology , Animals , Chronic Disease , Humans , Mice , Practice Guidelines as Topic
8.
Immunity ; 54(4): 702-720.e17, 2021 04 13.
Article En | MEDLINE | ID: mdl-33789089

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.


Chromatin/immunology , T-Lymphocytes, Regulatory/immunology , Wound Healing/immunology , Adult , Animals , Basic-Leucine Zipper Transcription Factors/immunology , Cell Differentiation/immunology , Cell Line , Female , Gene Expression Profiling/methods , Gene Expression Regulation/immunology , HaCaT Cells , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, CCR8/immunology , T Follicular Helper Cells/immunology
9.
Cell Mol Immunol ; 18(1): 182-193, 2021 01.
Article En | MEDLINE | ID: mdl-31988493

The vast majority of Foxp3+ regulatory T cells (Tregs) are generated in the thymus, and several factors, such as cytokines and unique thymic antigen-presenting cells, are known to contribute to the development of these thymus-derived Tregs (tTregs). Here, we report the existence of a specific subset of Foxp3+ Tregs within the thymus that is characterized by the expression of IL-1R2, which is a decoy receptor for the inflammatory cytokine IL-1. Detailed flow cytometric analysis of the thymocytes from Foxp3hCD2xRAG1GFP reporter mice revealed that the IL-1R2+ Tregs are mainly RAG1GFP- and CCR6+CCR7-, demonstrating that these Tregs are recirculating cells entering the thymus from the periphery and that they have an activated phenotype. In the spleen, the majority of IL-1R2+ Tregs express neuropilin-1 (Nrp-1) and Helios, suggesting a thymic origin for these Tregs. Interestingly, among all tissues studied, the highest frequency of IL-1R2+ Tregs was observed in the thymus, indicating preferential recruitment of this Treg subset by the thymus. Using fetal thymic organ cultures (FTOCs), we demonstrated that increased concentrations of exogenous IL-1ß blocked intrathymic Treg development, resulting in a decreased frequency of CD25+Foxp3+ tTregs and an accumulation of CD25+Foxp3- Treg precursors. Interestingly, the addition of IL-1R2+ Tregs, but not IL-1R2- Tregs, to reaggregated thymic organ cultures (RTOCs) abrogated the IL-1ß-mediated blockade, demonstrating that these recirculating IL-1R2+ Tregs can quench IL-1 signaling in the thymus and thereby maintain thymic Treg development even under inflammatory conditions.


Cell Differentiation , Forkhead Transcription Factors/physiology , Inflammation/immunology , Receptors, Interleukin-1 Type II/metabolism , T-Lymphocytes, Regulatory/cytology , Thymocytes/cytology , Animals , Cytokines/metabolism , Homeodomain Proteins/physiology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Spleen/cytology , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Thymocytes/immunology , Thymocytes/metabolism
10.
iScience ; 23(5): 101127, 2020 May 22.
Article En | MEDLINE | ID: mdl-32422593

Regulatory T cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. Negative regulators of Foxp3 expression are not well understood. Here, we generated double-stranded DNA probes complementary to the Foxp3 promoter sequence and performed a pull-down with nuclear protein in vitro, followed by elution of bound proteins and quantitative mass spectrometry. Of the Foxp3-promoter-binding transcription factors identified with this approach, one was T cell factor 1 (TCF1). Using viral over-expression, we identified TCF1 as a repressor of Foxp3 expression. In TCF1-deficient animals, increased levels of Foxp3intermediateCD25negative T cells were identified. CRISPR-Cas9 knockout studies in primary human and mouse conventional CD4 T (Tconv) cells revealed that TCF1 protects Tconv cells from inadvertent Foxp3 expression. Our data implicate a role of TCF1 in suppressing Foxp3 expression in activated T cells.

11.
Immunity ; 52(2): 295-312.e11, 2020 02 18.
Article En | MEDLINE | ID: mdl-31924477

Specialized regulatory T (Treg) cells accumulate and perform homeostatic and regenerative functions in nonlymphoid tissues. Whether common precursors for nonlymphoid-tissue Treg cells exist and how they differentiate remain elusive. Using transcription factor nuclear factor, interleukin 3 regulated (Nfil3) reporter mice and single-cell RNA-sequencing (scRNA-seq), we identified two precursor stages of interleukin 33 (IL-33) receptor ST2-expressing nonlymphoid tissue Treg cells, which resided in the spleen and lymph nodes. Global chromatin profiling of nonlymphoid tissue Treg cells and the two precursor stages revealed a stepwise acquisition of chromatin accessibility and reprogramming toward the nonlymphoid-tissue Treg cell phenotype. Mechanistically, we identified and validated the transcription factor Batf as the driver of the molecular tissue program in the precursors. Understanding this tissue development program will help to harness regenerative properties of tissue Treg cells for therapy.


Basic-Leucine Zipper Transcription Factors/metabolism , Lymph Nodes/immunology , Spleen/immunology , T-Lymphocytes, Regulatory/cytology , Adoptive Transfer , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Cell Differentiation/genetics , Chromatin/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Profiling , Gene Expression Regulation/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mice , Organ Specificity/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , T-Lymphocytes, Regulatory/metabolism
12.
Nat Commun ; 10(1): 1621, 2019 04 08.
Article En | MEDLINE | ID: mdl-30962454

The transcriptional regulator Rbpj is involved in T-helper (TH) subset polarization, but its function in Treg cells remains unclear. Here we show that Treg-specific Rbpj deletion leads to splenomegaly and lymphadenopathy despite increased numbers of Treg cells with a polyclonal TCR repertoire. A specific defect of Rbpj-deficient Treg cells in controlling TH2 polarization and B cell responses is observed, leading to the spontaneous formation of germinal centers and a TH2-associated immunoglobulin class switch. The observed phenotype is environment-dependent and can be induced by infection with parasitic nematodes. Rbpj-deficient Treg cells adopt open chromatin landscapes and gene expression profiles reminiscent of tissue-derived TH2-polarized Treg cells, with a prevailing signature of the transcription factor Gata-3. Taken together, our study suggests that Treg cells require Rbpj to specifically restrain TH2 responses, including their own excessive TH2-like differentiation potential.


Immunity, Cellular , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Strongyloidiasis/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Cell Differentiation/immunology , Disease Models, Animal , Female , GATA3 Transcription Factor/metabolism , Gene Expression Profiling , Gene Expression Regulation/immunology , Germinal Center/immunology , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Strongyloides ratti/immunology , Strongyloides ratti/pathogenicity , Strongyloidiasis/parasitology , T-Lymphocytes, Regulatory/metabolism , Transcriptome/immunology
13.
J Allergy Clin Immunol ; 142(3): 728-743, 2018 09.
Article En | MEDLINE | ID: mdl-30195378

During the last decade, advances in sequencing technologies allowed production of a wealth of information on epigenetic modifications in T cells. Epigenome maps, in combination with mechanistic studies, have demonstrated that T cells undergo extensive epigenome remodeling in response to signals, which has a strong effect on phenotypic stability and function of lymphocytes. In this review we focus on DNA methylation, histone modifications, and chromatin structure as important epigenetic mechanisms involved in controlling T-cell responses. In particular, we discuss epigenetic processes in light of the development, activation, and differentiation of CD4+ T helper (TH), regulatory T, and CD8+ T cells. As central aspects of the adaptive immune system, we review mechanisms that ensure molecular memory, stability, plasticity, and exhaustion of T cells. We further discuss the effect of the tissue environment on imprinting T-cell epigenomes with potential implications for immunotherapy.


Epigenesis, Genetic , T-Lymphocytes/cytology , Animals , Cell Differentiation , Humans , Thymus Gland/cytology
15.
Nat Immunol ; 18(10): 1160-1172, 2017 Oct.
Article En | MEDLINE | ID: mdl-28783152

Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. We found that epigenetic modifications defined the molecular characteristics of tissue Treg cells. Tagmentation-based whole-genome bisulfite sequencing revealed more than 11,000 regions that were methylated differentially in pairwise comparisons of tissue Treg cell populations and lymphoid T cells. Similarities in the epigenetic landscape led to the identification of a common tissue Treg cell population that was present in many organs and was characterized by gain and loss of DNA methylation that included many gene sites associated with the TH2 subset of helper T cells, such as the gene encoding cytokine IL-33 receptor ST2, as well as the production of tissue-regenerative factors. Furthermore, the ST2-expressing population was dependent on the transcriptional regulator BATF and could be expanded by IL-33. Thus, tissue Treg cells integrate multiple waves of epigenetic reprogramming that define their tissue-restricted specialization.


DNA Methylation , Genome-Wide Association Study , T-Lymphocytes, Regulatory/metabolism , Animals , Biomarkers , Cluster Analysis , Computational Biology/methods , CpG Islands , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , High-Throughput Nucleotide Sequencing , Immunophenotyping , Mice , Mice, Transgenic , Molecular Sequence Annotation , Organ Specificity/genetics , Organ Specificity/immunology , Promoter Regions, Genetic , Th2 Cells/metabolism , Transcription Initiation Site , Transcriptome
16.
Nat Immunol ; 18(2): 161-172, 2017 02.
Article En | MEDLINE | ID: mdl-27941786

Aire is a transcriptional regulator that induces promiscuous expression of thousands of genes encoding tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs that regulate its own expression have remained elusive. Here we comprehensively analyzed both cis-acting and trans-acting regulatory mechanisms and found that the Aire locus was insulated by the global chromatin organizer CTCF and was hypermethylated in cells and tissues that did not express Aire. In mTECs, however, Aire expression was facilitated by concurrent eviction of CTCF, specific demethylation of exon 2 and the proximal promoter, and the coordinated action of several transcription activators, including Irf4, Irf8, Tbx21, Tcf7 and Ctcfl, which acted on mTEC-specific accessible regions in the Aire locus.


Epithelial Cells/immunology , Gene Regulatory Networks , T-Lymphocytes/physiology , Thymus Gland/immunology , Transcription Factors/metabolism , Animals , Antigen Presentation/genetics , Autoantigens/metabolism , CCCTC-Binding Factor , Cell Differentiation , Cells, Cultured , Clonal Selection, Antigen-Mediated , DNA Methylation , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Specificity/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Thymus Gland/cytology , Transcription Factors/genetics , AIRE Protein
17.
Oncotarget ; 7(17): 23006-18, 2016 Apr 26.
Article En | MEDLINE | ID: mdl-27050272

Nijmegen Breakage Syndrome is a disease caused by NBN mutations. Here, we report a novel function of Nbn in skin homeostasis. We found that Nbn deficiency in hair follicle (HF) progenitors promoted increased DNA damage signaling, stimulating p16Ink4a up-regulation, Trp53 stabilization and cytokines secretion leading to HF-growth arrest and hair loss. At later stages, the basal keratinocytes layer exhibited also enhanced DNA damage response but in contrast to the one in HF progenitor was not associated with pro-inflammatory cytokines expression, but rather increased proliferation, lack of differentiation and immune response resembling psoriasiform dermatitis. Simultaneous Nbn and Trp53 inactivation significantly exacerbated this phenotype, due to the lack of inhibition of pro-inflammatory cytokines secretion by Trp53. Altogether, we demonstrated novel functions of Nbn in HF maintenance and prevention of skin inflammation and we provide a mechanistic explanation that links cell intrinsic DNA maintenance with large scale morphological tissue alterations.


Alopecia/etiology , Cell Cycle Proteins/physiology , Dermatitis/pathology , Epidermis/pathology , Nuclear Proteins/physiology , Psoriasis/pathology , Tumor Suppressor Protein p53/physiology , Alopecia/pathology , Animals , DNA-Binding Proteins , Dermatitis/metabolism , Epidermis/metabolism , Mice , Mice, Knockout , Phenotype , Psoriasis/metabolism
18.
Prog Mol Biol Transl Sci ; 136: 175-205, 2015.
Article En | MEDLINE | ID: mdl-26615097

Regulatory T cells (Tregs) are crucial mediators of self-tolerance in the periphery. They differentiate in the thymus, where interactions with thymus-resident antigen-presenting cells, an instructive cytokine milieu, and stimulation of the T cell receptor lead to the selection into the Treg lineage and the induction of Foxp3 gene expression. Once mature, Treg cells leave the thymus and migrate into either the secondary lymphoid tissues, e.g., lymph nodes and spleen, or peripheral nonlymphoid tissues. There is growing evidence that Treg cells go beyond the classical modulation of immune responses and also play important functional roles in nonlymphoid peripheral tissues. In this review, we summarize recent findings about the thymic Treg lineage differentiation as well as the further specialization of Treg cells in the secondary lymphoid and in the peripheral nonlymphoid organs.


Cell Differentiation , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Humans , Models, Immunological
19.
J Immunol ; 195(7): 3058-70, 2015 Oct 01.
Article En | MEDLINE | ID: mdl-26324778

Regulatory T cells (Tregs) differentiate in the thymus, but the mechanisms that control this process are not fully understood. We generated a comprehensive quantitative and differential proteome of murine Tregs and conventional T cells. We identified 5225 proteins, 164 of which were differentially expressed in Tregs. Together with the comparative analysis of proteome and gene expression data, we identified TCF7 as a promising candidate. Genetic elimination of transcription factor 7 (TCF7) led to increased fractions of Tregs in the thymus. Reduced levels of TCF7, found in the heterozygote, resulted in a greater potential for Treg precursors to differentiate into the Treg lineage. In contrast, activation of TCF7 through ß-catenin had the opposite effect. TCF7 levels influenced the required TCR signaling strength of Treg precursors, and TCF7 deficiency broadened the repertoire and allowed lower TCR affinities to be recruited into the Treg lineage. FOXP3 was able to repress TCF7 protein expression. In summary, we propose a regulatory role for TCF7 in limiting access to the Treg lineage.


Hematopoiesis/immunology , Hepatocyte Nuclear Factor 1-alpha/physiology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Animals , Cell Lineage/immunology , Cell Proliferation , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Hematopoiesis/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteome/analysis , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , beta Catenin/metabolism
20.
PLoS One ; 10(5): e0127038, 2015.
Article En | MEDLINE | ID: mdl-25978037

Peripheral immune regulation depends on the generation of thymic-derived regulatory T (tTreg) cells to maintain self-tolerance and to counterbalance overshooting immune responses. The expression of the Treg lineage defining transcription factor Foxp3 in developing tTreg cells depends on TCR signaling during the thymic selection process of these T cells. In this study, we surprisingly identify Foxp3+ immature thymocytes at the double-negative (DN) stage in transcription factor 7 (Tcf7)-deficient mice. These Foxp3+ cells did not express a TCR (ß or γδ chains), CD3 or CD5 and therefore these cells were true DN cells. Further investigation of this phenomenon in a transgenic TCR model showed that Foxp3-expressing DN cells could not respond to TCR stimulation in vivo. These data suggest that Foxp3 expression in these DN cells occurred independently of TCR signaling. Interestingly, these Foxp3+ DN cells were located in a transition state between DN1 and DN2 (CD4-CD8-CD3-TCR-CD44highCD25low). Our results indicate that Tcf7 is involved in preventing the premature expression of Foxp3 in DN thymocytes.


Forkhead Transcription Factors/metabolism , Thymocytes/metabolism , Animals , Flow Cytometry , Forkhead Transcription Factors/physiology , Gene Expression/genetics , Gene Expression/physiology , Hepatocyte Nuclear Factor 1-alpha/deficiency , Hepatocyte Nuclear Factor 1-alpha/physiology , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Receptors, Antigen, T-Cell/metabolism
...