Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Curr Opin Biotechnol ; 71: 98-104, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34311150

RESUMEN

Analytics for host cell protein (HCP) analysis of therapeutic monoclonal antibody preparations have developed enormously. We consider how learnings from this can inform HCP analysis of gene therapy viral vector products. The application of mass spectrometry (MS) approaches for analysis of HCPs in viral vector preparations is being established, although such information remains limited and is yet to be widely applied into process or host cell line development to reduce HCP amounts or risk. As these MS approaches, and the data from them, are applied and become available, the process understanding created will speed process development activity. We describe technologies that have been, or can be, applied to viral vector HCP analysis to aid process development, reduce HCP amounts, identify critical HCPs and thus inform risk assessment and management based on a knowledge of specific HCPs, ultimately delivering safe and efficacious gene therapy products to the clinic.


Asunto(s)
Productos Biológicos , Animales , Anticuerpos Monoclonales , Células CHO , Cricetinae , Cricetulus , Terapia Genética
2.
Sci Rep ; 9(1): 3417, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833714

RESUMEN

For the clinical delivery of immunotherapies it is anticipated that cells will be cryopreserved and shipped to the patient where they will be thawed and administered. An established view in cellular cryopreservation is that following freezing, cells must be warmed rapidly (≤5 minutes) in order to maintain high viability. In this study we examine the interaction between the rate of cooling and rate of warming on the viability, and function of T cells formulated in a conventional DMSO based cryoprotectant and processed in conventional cryovials. The data obtained show that provided the cooling rate is -1 °C min-1 or slower, there is effectively no impact of warming rate on viable cell number within the range of warming rates examined (1.6 °C min-1 to 113 °C min-1). It is only following a rapid rate of cooling (-10 °C min-1) that a reduction in viable cell number is observed following slow rates of warming (1.6 °C min-1 and 6.2 °C min-1), but not rapid rates of warming (113 °C min-1 and 45 °C min-1). Cryomicroscopy studies revealed that this loss of viability is correlated with changes in the ice crystal structure during warming. At high cooling rates (-10 °C min-1) the ice structure appeared highly amorphous, and when subsequently thawed at slow rates (6.2 °C min-1 and below) ice recrystallization was observed during thaw suggesting mechanical disruption of the frozen cells. This data provides a fascinating insight into the crystal structure dependent behaviour during phase change of frozen cell therapies and its effect on live cell suspensions. Furthermore, it provides an operating envelope for the cryopreservation of T cells as an emerging industry defines formulation volumes and cryocontainers for immunotherapy products.


Asunto(s)
Criopreservación/métodos , Linfocitos T/citología , Supervivencia Celular/fisiología , Frío , Congelación , Humanos , Linfocitos T/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...