Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 28(14): 20117-20134, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680079

RESUMEN

The combined data from the ESA Mobile Raman Polarization and Water Vapor Lidar (EMORAL), the LATMOS Bistatic Doppler Cloud Radar System for Atmospheric Studies (BASTA), and the INOE Microwave Radiometer (HATPRO-G2) have been used to explore the synergy for the spatio-temporal discrimination of polarization and molecular, aerosol and cloud scattering. The threshold-based methodology is proposed to perform an aerosol-cloud typing using the three instruments. It is demonstrated for 24 hours of observations on 10 June 2019 in Rzecin, Poland. A new scheme for target classification, developed collaboratively by the FUW and the OUC, can help determine molecules, aerosol (spherical, non-spherical, fine, coarse), cloud phase (liquid, ice, supercooled droplets) and precipitation (drizzle, rain). For molecular, aerosol, and cloud discrimination, the thresholds are set on the backward scattering ratio, the linear particle depolarization ratio and the backscatter colour ratio, all calculated from lidar signals. For the cloud phase and precipitation categorization, the thresholds are set on the reflectivity and the Doppler velocity derived from cloud radar signals. For boundary layer particles, precipitation, and supercooled droplets separation, the thresholds are set on the profiles of temperature and relative humidity obtained by the microwave radiometer. The algorithm is able to perform separation even under complicated meteorological situation, as in the presented case study.

2.
Bull Am Meteorol Soc ; 100(1): 31-40, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33005056

RESUMEN

Over 150 jet engine power-loss and damage events have been attributed to a phenomenon known as Ice Crystal Icing (ICI) during the past two decades. Attributed to ingestion of large numbers of small ice particles into the engine core, typically these events have occurred at high altitudes near large convective systems in tropical air masses. In recent years there have been substantial international efforts by scientists, engineers, aviation regulators and airlines to better understand the relevant meteorological processes, solve critical engineering questions, develop new certification standards, and devise mitigation strategies for the aviation industry. One area of research is the development of nowcasting techniques based on available remote sensing technology and cloud models to identify potential areas of high ice water content (HIWC) and enable the provision of alerts to the aviation industry. An international consortium of researchers has investigated various methods for detecting the HIWC conditions associated with ICI. Multiple techniques have been developed using geostationary and polar orbiting satellite products, numerical weather prediction model fields, and ground based radar data as the basis for HIWC products. Targeted field experiments in tropical regions with high incidence of ICI events have provided data for product validation and refinement of these methods. Beginning in 2015, research teams have assembled at a series of bi-annual workshops to exchange ideas and standardize methods for evaluating performance of HIWC detection products. This paper provides an overview of the approaches used and the current skill for identifying HIWC conditions. Recommendations for future work in this area are also presented.

3.
Atmos Meas Tech ; 11(3): 1615-1637, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31534555

RESUMEN

Recent studies have found that flight through deep convective storms and ingestion of high mass concentrations of ice crystals, also known as high ice water content (HIWC), into aircraft engines can adversely impact aircraft engine performance. These aircraft engine icing events caused by HIWC have been documented during flight in weak reflectivity regions near convective updraft regions that do not appear threatening in onboard weather radar data. Three airborne field campaigns were conducted in 2014 and 2015 to better understand how HIWC is distributed in deep convection, both as a function of altitude and proximity to convective updraft regions, and to facilitate development of new methods for detecting HIWC conditions, in addition to many other research and regulatory goals. This paper describes a prototype method for detecting HIWC conditions using geostationary (GEO) satellite imager data coupled with in-situ total water content (TWC) observations collected during the flight campaigns. Three satellite-derived parameters were determined to be most useful for determining HIWC probability: 1) the horizontal proximity of the aircraft to the nearest overshooting convective updraft or textured anvil cloud, 2) tropopause-relative infrared brightness temperature, and 3) daytime-only cloud optical depth. Statistical fits between collocated TWC and GEO satellite parameters were used to determine the membership functions for the fuzzy logic derivation of HIWC probability. The products were demonstrated using data from several campaign flights and validated using a subset of the satellite-aircraft collocation database. The daytime HIWC probability was found to agree quite well with TWC time trends and identified extreme TWC events with high probability. Discrimination of HIWC was more challenging at night with IR-only information. The products show the greatest capability for discriminating TWC ≥ 0.5 g m-3. Product validation remains challenging due to vertical TWC uncertainties and the typically coarse spatio-temporal resolution of the GEO data.

4.
Surv Geophys ; 38(6): 1529-1568, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31997845

RESUMEN

Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA