Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Mol Pharm ; 15(9): 3979-3996, 2018 09 04.
Article En | MEDLINE | ID: mdl-30040421

A number of cytotoxic pyrrolobenzodiazepine (PBD) monomers containing various disulfide-based prodrugs were evaluated for their ability to undergo activation (disulfide cleavage) in vitro in the presence of either glutathione (GSH) or cysteine (Cys). A good correlation was observed between in vitro GSH stability and in vitro cytotoxicity toward tumor cell lines. The prodrug-containing compounds were typically more potent against cells with relatively high intracellular GSH levels (e.g., KPL-4 cells). Several antibody-drug conjugates (ADCs) were subsequently constructed from PBD dimers that incorporated selected disulfide-based prodrugs. Such HER2 conjugates exhibited potent antiproliferation activity against KPL-4 cells in vitro in an antigen-dependent manner. However, the disulfide prodrugs contained in the majority of such entities were surprisingly unstable toward whole blood from various species. One HER2-targeting conjugate that contained a thiophenol-derived disulfide prodrug was an exception to this stability trend. It exhibited potent activity in a KPL-4 in vivo efficacy model that was approximately three-fold weaker than that displayed by the corresponding parent ADC. The same prodrug-containing conjugate demonstrated a three-fold improvement in mouse tolerability properties in vivo relative to the parent ADC, which did not contain the prodrug.


Benzodiazepines/chemistry , Disulfides/chemistry , Immunoconjugates/chemistry , Prodrugs/chemistry , Pyrroles/chemistry , Cell Line, Tumor , Cysteine/metabolism , Glutathione/metabolism , Humans , Immunoconjugates/metabolism , Molecular Structure
2.
MAbs ; 6(6): 1500-8, 2014.
Article En | MEDLINE | ID: mdl-25484037

RG7652 is a human immunoglobulin 1 (IgG1) monoclonal antibody (mAb) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) and is designed for the treatment of hypercholesterolemia. A target-binding enzyme-linked immunosorbent assay (ELISA) was developed to measure RG7652 levels in human serum in a Phase I study. Although target-binding assay formats are generally used to quantify free therapeutic, the actual therapeutic species being measured are affected by assay conditions, such as sample dilution and incubation time, and levels of soluble target in the samples. Therefore, in the presence of high concentrations of circulating target, the choice of reagents and assay conditions can have a significant effect on the observed pharmacokinetic (PK) profiles. Phase I RG7652 PK analysis using the ELISA data resulted in a nonlinear dose normalized exposure. An investigation was conducted to characterize the ELISA to determine whether the assay format and reagents may have contributed to the PK observation. In addition, to confirm the ELISA results, a second orthogonal method, liquid chromatography tandem mass spectrometry (LC-MS/MS) using a signature peptide as surrogate, was developed and implemented. A subset of PK samples, randomly selected from half of the subjects in the 6 single ascending dose (SAD) cohorts in the Phase I clinical study, was analyzed with the LC-MS/MS assay, and the data were found to be comparable to the ELISA data. This paper illustrates the importance of reagent characterization, as well as the benefits of using an orthogonal approach to eliminate bioanalytical contributions when encountering unexpected observations.


Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Immunoglobulin G/immunology , Proprotein Convertases/immunology , Serine Endopeptidases/immunology , Antibodies, Monoclonal/blood , Antibodies, Monoclonal, Humanized , Chromatography, Liquid , Cohort Studies , Dose-Response Relationship, Drug , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Proprotein Convertase 9 , Tandem Mass Spectrometry
4.
Bioanalysis ; 4(17): 2127-39, 2012 Sep.
Article En | MEDLINE | ID: mdl-23013395

BACKGROUND: Design of experiments (DOE) is a systematic approach to assess the effects of many factors on a response of an assay. This paper provides a case study whereby DOE was successfully utilized to evaluate robustness parameters for a ligand-binding assay (LBA). METHODOLOGY: A 24-run Plackett-Burman design was developed to investigate factors that may have caused a lack of robustness in this particular LBA. We modeled five main effects and their ten two-way interactions, using the standard curve signal as the response. RESULTS: By utilizing DOE, we were able to quickly identify the factors that affected our assay's performance. The lack of robustness was attributed to the handling of the coat reagent. Factors that had an adverse effect on the coat material were vortexing and freeze-thaw cycles. CONCLUSION: We recommend that a robustness DOE be conducted prior to the validation of an assay for early identification of critical factors that may impact assay performance.


Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Research Design/standards , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Humans
...