Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(7): e5064, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38864722

RESUMEN

Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.


Asunto(s)
Proteínas Bacterianas , Pseudoalteromonas , Hemoglobinas Truncadas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/química , Cinética , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo , Hemoglobinas Truncadas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Simulación de Dinámica Molecular , Regiones Antárticas , Ligandos
2.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891937

RESUMEN

Modular supramolecular complexes, where different proteins are assembled to gather targeting capability and photofunctional properties within the same structures, are of special interest for bacterial photodynamic inactivation, given their inherent biocompatibility and flexibility. We have recently proposed one such structure, exploiting the tetrameric bacterial protein streptavidin as the main building block, to target S. aureus protein A. To expand the palette of targets, we have linked biotinylated Concanavalin A, a sugar-binding protein, to a methylene blue-labelled streptavidin. By applying a combination of spectroscopy and microscopy, we demonstrate the binding of Concanavalin A to the walls of Gram-positive S. aureus and Gram-negative E. coli. Photoinactivation is observed for both bacterial strains in the low micromolar range, although the moderate affinity for the molecular targets and the low singlet oxygen yields limit the overall efficiency. Finally, we apply a maximum entropy method to the analysis of autocorrelation traces, which proves particularly useful when interpreting signals measured for diffusing systems heterogeneous in size, such as fluorescent species bound to bacteria.


Asunto(s)
Pared Celular , Concanavalina A , Escherichia coli , Staphylococcus aureus , Concanavalina A/química , Concanavalina A/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Pared Celular/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Proteínas Bacterianas/metabolismo , Unión Proteica
3.
Anal Chem ; 96(1): 137-144, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38124657

RESUMEN

Aptamers are folded oligonucleotides that selectively recognize and bind a target and are consequently regarded as an emerging alternative to antibodies for sensing and therapeutic applications. The rational development of functional aptamers is strictly related to the accurate definition of molecular binding properties. Nevertheless, most of the methodologies employed to define binding affinities use bulk measurements. Here, we describe the use of fluorescence correlation spectroscopy (FCS) as a method with single-molecule sensitivity that quantitatively defines aptamer-protein binding. First, FCS was used to measure the equilibrium affinity between the CLN3 aptamer, conjugated with a dye, and its target, the c-Met protein. Equilibrium affinity was also determined for other functional aptamers targeting nucleolin and platelet-derived growth factors. Then, association and dissociation rates of CLN3 to/from the target protein were measured using FCS by monitoring the equilibration kinetics of the binding reaction in solution. Finally, FCS was exploited to investigate the behavior of CLN3 exposed to physiological concentrations of the most abundant serum proteins. Under these conditions, the aptamer showed negligible interactions with nontarget serum proteins while preserving its affinity for the c-Met. The presented results introduce FCS as an alternative or complementary analytical tool in aptamer research, particularly well-suited for the characterization of protein-targeting aptamers.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , Unión Proteica , Proteínas Sanguíneas/metabolismo , Análisis Espectral
4.
Pharmaceutics ; 15(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38140116

RESUMEN

Photo-immunotherapy uses antibodies conjugated to photosensitizers to produce nanostructured constructs endowed with targeting properties and photo-inactivation capabilities towards tumor cells. The superficial receptor density on cancer cells is considered a determining factor for the efficacy of the photodynamic treatment. In this work, we propose the use of a photoactive conjugate that consists of the clinical grade PD-L1-binding monoclonal antibody Atezolizumab, covalently linked to either the well-known photosensitizer eosin or the fluorescent probe Alexa647. Using single-molecule localization microscopy (direct stochastic optical reconstruction microscopy, dSTORM), and an anti-PD-L1 monoclonal antibody labelled with Alexa647, we quantified the density of PD-L1 receptors exposed on the cell surface in two human non-small-cell lung cancer lines (H322 and A549) expressing PD-L1 to a different level. We then investigated if this value correlates with the effectiveness of the photodynamic treatment. The photodynamic treatment of H322 and A549 with the photo-immunoconjugate demonstrated its potential for PDT treatments, but the efficacy did not correlate with the PD-L1 expression levels. Our results provide additional evidence that receptor density does not determine a priori the level of photo-induced cell death.

5.
Antioxidants (Basel) ; 11(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421416

RESUMEN

S-Nitrosylation of cysteine residues is an important molecular mechanism for dynamic, post-translational regulation of several proteins, providing a ubiquitous redox regulation. Cys residues are present in several fluorescent proteins (FP), including members of the family of Aequorea victoria Green Fluorescent Protein (GFP)-derived FPs, where two highly conserved cysteine residues contribute to a favorable environment for the autocatalytic chromophore formation reaction. The effect of nitric oxide on the fluorescence properties of FPs has not been investigated thus far, despite the tremendous role FPs have played for 25 years as tools in cell biology. We have examined the response to nitric oxide of fluorescence emission by the blue-emitting fluorescent protein mTagBFP2. To our surprise, upon exposure to micromolar concentrations of nitric oxide, we observed a roughly 30% reduction in fluorescence quantum yield and lifetime. Recovery of fluorescence emission is observed after treatment with Na-dithionite. Experiments on related fluorescent proteins from different families show similar nitric oxide sensitivity of their fluorescence. We correlate the effect with S-nitrosylation of Cys residues. Mutation of Cys residues in mTagBFP2 removes its nitric oxide sensitivity. Similarly, fluorescent proteins devoid of Cys residues are insensitive to nitric oxide. We finally show that mTagBFP2 can sense exogenously generated nitric oxide when expressed in a living mammalian cell. We propose mTagBFP2 as the starting point for a new class of genetically encoded nitric oxide sensors based on fluorescence lifetime imaging.

6.
Bioconjug Chem ; 33(4): 666-676, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35266706

RESUMEN

We report the development of a supramolecular structure endowed with photosensitizing properties and targeting capability for antimicrobial photodynamic inactivation. Our synthetic strategy uses the tetrameric bacterial protein streptavidin, labeled with the photosensitizer eosin, as the main building block. Biotinylated immunoglobulin G (IgG) from human serum, known to associate with Staphylococcus aureus protein A, was bound to the complex streptavidin-eosin. Fluorescence correlation spectroscopy and fluorescence microscopy demonstrate binding of the complex to S. aureus. Efficient photoinactivation is observed for S. aureus suspensions treated with IgG-streptavidin-eosin at concentrations higher than 0.5 µM and exposed to green light. The proposed strategy offers a flexible platform for targeting a variety of molecules and microbial species.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Antibacterianos/farmacología , Antiinfecciosos/química , Eosina Amarillenta-(YS) , Humanos , Inmunoglobulina G , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Staphylococcus aureus/fisiología , Estreptavidina
7.
ACS Appl Mater Interfaces ; 14(12): 14025-14032, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35302731

RESUMEN

Hypericin is a photosensitizing drug that is active against membrane-enveloped viruses and therefore constitutes a promising candidate for the treatment of SARS-CoV-2 infections. The antiviral efficacy of hypericin is largely determined by its affinity toward viral components and by the number of active molecules loaded on single viruses. Here we use an experimental approach to follow the interaction of hypericin with SARS-CoV-2, and we evaluate its antiviral efficacy, both in the dark and upon photoactivation. Binding to viral particles is directly visualized with fluorescence microscopy, and a strong affinity for the viral particles, most likely for the viral envelope, is measured spectroscopically. The loading of a maximum of approximately 30 molecules per viral particle is estimated, despite with marked heterogeneity among particles. Because of this interaction, nanomolar concentrations of photoactivated hypericin substantially reduce virus infectivity on Vero E6 cells, but a partial effect is also observed in dark conditions, suggesting multiple mechanisms of action for this drug.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Animales , Antracenos , Antivirales/química , Chlorocebus aethiops , Perileno/análogos & derivados , SARS-CoV-2 , Células Vero
8.
Antibiotics (Basel) ; 11(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35203884

RESUMEN

Combined therapies are usually used to treat acne vulgaris since this approach can tackle various foci simultaneously. Using a combination of spectroscopic, computational, and microbiological techniques and methods, herein we report on the use of ß-lactoglobulin as a double payload carrier of hypericin (an antimicrobial photodynamic agent) and all-trans retinoic acid (an anti-inflammatory drug) for S. aureus in vitro photodynamic inactivation. The addition of all-trans retinoic acid to hypericin-ß-lactoglobulin complex renders a photochemically safe vehicle due to the photophysical quenching of hypericin, which recovers its photodynamic activity when in contact with bacteria. The ability of hypericin to photoinactivate S. aureus was not affected by retinoic acid. ß-Lactoglobulin is a novel biocompatible and photochemically safe nanovehicle with strong potential for the treatment of acne.

9.
ACS Photonics ; 9(1): 101-109, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35083366

RESUMEN

Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFlu-S). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs.

10.
Nano Lett ; 21(12): 5360-5368, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34125548

RESUMEN

The functionalization of nanoparticles with functional moieties is a key strategy to achieve cell targeting in nanomedicine. The interplay between size and ligand number is crucial for the formulation performance and needs to be properly characterized to understand nanoparticle structure-activity relations. However, there is a lack of methods able to measure both size and ligand number at the same time and at the single particle level. Here, we address this issue by introducing a correlative light and electron microscopy (CLEM) method combining super-resolution microscopy (SRM) and transmission electron microscopy (TEM) imaging. We apply our super-resCLEM method to characterize the relationship between size and ligand number and density in PLGA-PEG nanoparticles. We highlight how heterogeneity found in size can impact ligand distribution and how a significant part of the nanoparticle population goes completely undetected in the single-technique analysis. Super-resCLEM holds great promise for the multiparametric analysis of other parameters and nanomaterials.


Asunto(s)
Nanopartículas , Ligandos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente
11.
Angew Chem Int Ed Engl ; 59(42): 18546-18555, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32627326

RESUMEN

Tumor cell-surface markers are usually overexpressed or mutated protein receptors for which spatiotemporal regulation differs between and within cancers. Single-molecule fluorescence imaging can profile individual markers in different cellular contexts with molecular precision. However, standard single-molecule imaging methods based on overexpressed genetically encoded tags or cumbersome probes can significantly alter the native state of receptors. We introduce a live-cell points accumulation for imaging in nanoscale topography (PAINT) method that exploits aptamers as minimally invasive affinity probes. Localization and tracking of individual receptors are based on stochastic and transient binding between aptamers and their targets. We demonstrated single-molecule imaging of a model tumor marker (EGFR) on a panel of living cancer cells. Affinity to EGFR was finely tuned by rational engineering of aptamer sequences to define receptor motion and/or native receptor density.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Imagen Individual de Molécula/métodos , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Microscopía Fluorescente , Receptores de Transferrina/química , Receptores de Transferrina/metabolismo
12.
Data Brief ; 30: 105468, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32382590

RESUMEN

Surface functionalization with targeting ligands confers to nanomaterials the ability of selectively recognize a biological target. Therefore, a quantitative characterization of surface functional molecules is critical for the rational development of nanomaterials-based applications, especially in nanomedicine research. Single-molecule localization microscopy can provide visualization of surface molecules at the level of individual particles, preserving the integrity of the material and overcoming the limitations of analytical methods based on ensemble averaging. Here we provide single-molecule localization data obtained on streptavidin-coated polystyrene particles, which can be exploited as a model system for surface-functionalized materials. After loading of the active sites of streptavidin molecules with a biotin-conjugated probe, they were imaged with a DNA-PAINT imaging approach, which can provide single-molecule imaging at subdiffraction resolution and molecule counting. Both raw records and analysed data, consisting in a list of space-time single-molecule coordinates, are shared. Additionally, Matlab functions are provided that analyse the single-molecule coordinates in order to quantify features of individual particles. These data might constitute a valuable reference for applications of similar quantitative imaging methodologies to other types of functionalized nanomaterials.

13.
Photochem Photobiol Sci ; 19(3): 324-331, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32154533

RESUMEN

Hypericin (Hyp) is one of the most effective, naturally occurring photodynamic agents, which proved effective against a wide array of microorganisms. One limitation of its large scale application as a disinfectant is the high production cost of the pure compound. The availability of photoactive materials at a lower cost may be highly beneficial to the actual implementation of photodisinfection also at the industrial level. In this work we report the use of a lyophilized extract from Hypericum perforatum as a photosensitizing material. We show that optical absorption in the green-red region of the visible spectrum of ethanol or DMSO solutions of the lyophilized extract contains bands arising from Hyp. When excited with light in the main Hyp absorption bands, fluorescence emission and triplet state formation occur as in pure Hyp solutions. We show that ethanol or DMSO solutions of the lyophilized extract from Hypericum perforatum are highly efficient photodynamic agents against Gram-positive Staphylococcus aureus, chosen as a model. The performance is indistinguishable from that of the pure compound. Using fluorescence microscopy, we demonstrate that upon incubation of S. aureus with lyophilized extract solutions, Hyp is found on the bacterial wall, as previously reported for the pure compound.


Asunto(s)
Antibacterianos/farmacología , Hypericum/química , Fármacos Fotosensibilizantes/farmacología , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
14.
Life Sci ; 233: 116710, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31369762

RESUMEN

AIMS: The naturally occurring compound curcumin has been proposed for a number of pharmacological applications. In spite of the promising chemotherapeutic properties of the molecule, the use of curcumin has been largely limited by its chemical instability in water. In this work, we propose the use of water soluble proteins to overcome this issue in perspective applications to photodynamic therapy of tumors. MATERIALS AND METHODS: Curcumin was bound to bovine serum albumin and its photophysical properties was studied as well as its effect on cell viability after light exposure through MTT assay and confocal imaging. KEY FINDINGS: Bovine serum albumin binds curcumin with moderate affinity and solubilizes the hydrophobic compound preserving its photophysical properties for several hours. Cell viability assays demonstrate that when bound to serum albumin, curcumin is an effective photosensitizer for HeLa cells, with better performance than curcumin alone. Confocal fluorescence imaging reveals that when curcumin is delivered alone, it preferentially associates with mitochondria, whereas curcumin bound to bovine serum albumin is found in additional locations within the cell, a fact that may be related to the higher phototoxicity observed in this case. SIGNIFICANCE: The higher bioavailability of the photosensitizing compound curcumin when bound to serum albumin may be exploited to increase the efficiency of the drug in photodynamic therapy of tumors.


Asunto(s)
Apoproteínas/metabolismo , Apoptosis/efectos de los fármacos , Curcumina/farmacología , Sistemas de Liberación de Medicamentos , Mioglobina/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Albúmina Sérica Bovina/metabolismo , Animales , Apoproteínas/química , Apoptosis/efectos de la radiación , Bovinos , Supervivencia Celular , Curcumina/química , Células HeLa , Caballos , Humanos , Mioglobina/química , Fármacos Fotosensibilizantes/química , Albúmina Sérica Bovina/química
15.
Biomacromolecules ; 20(5): 2024-2033, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30995399

RESUMEN

Bioavailability of photosensitizers for cancer photodynamic therapy is often hampered by their low solubility in water. Here, we overcome this issue by using the water-soluble protein apomyoglobin (apoMb) as a carrier for the photosensitizer hypericin (Hyp). The Hyp-apoMb complex is quickly uptaken by HeLa and PC3 cells at submicromolar concentrations. Fluorescence emission of Hyp-apoMb is exploited to localize the cellular distribution of the photosensitizer. The plasma membrane is rapidly and efficiently loaded, and fluorescence is observed in the cytoplasm only at later times and to a lesser extent. Comparison with cells loaded with Hyp alone demonstrates that the uptake of the photosensitizer without the protein carrier is a slower, less efficient process, that involves the whole cell structure without preferential accumulation at the plasma membrane. Cell viability assays demonstrate that the Hyp-apoMb exhibits superior performance over Hyp. Similar results were obtained using tumor spheroids as three-dimensional cell culture models.


Asunto(s)
Antineoplásicos/administración & dosificación , Apoproteínas/química , Portadores de Fármacos/química , Mioglobina/química , Perileno/análogos & derivados , Fármacos Fotosensibilizantes/administración & dosificación , Antracenos , Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Perileno/administración & dosificación , Perileno/química , Perileno/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Esferoides Celulares/efectos de los fármacos
16.
ACS Appl Mater Interfaces ; 10(29): 24361-24369, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29989787

RESUMEN

The synthesis and photophysical properties of a tailored Pt(II) complex are presented. The phosphorescence of its monomeric species in homogeneous solutions is quenched by interaction with the solvent and therefore absent even upon deoxygenation. However, aggregation-induced shielding from the environment and suppression of rotovibrational degrees of freedom trigger a phosphorescence turn-on that is not suppressed by molecular oxygen, despite possessing an excited-state lifetime ranging in the microsecond scale. Thus, the photoinduced production of reactive oxygen species is avoided by the suppression of diffusion-controlled Dexter-type energy transfer to triplet molecular oxygen. These aggregates emit with the characteristic green luminescence profile of monomeric complexes, indicating that Pt-Pt or excimeric interactions are negligible. Herein, we show that these aggregates can be used to label a model biomolecule (bovine serum albumin) with a microsecond-range luminescence. The protein stabilizes the aggregates, acting as a carrier in aqueous environments. Despite spectral overlaps, the green phosphorescence can be separated by time-gated detection from the dominant autofluorescence of the protein arising from a covalently bound green fluorophore that emits in the nanosecond range. Interestingly, the aggregates also acted as energy donors able to sensitize the emission of a fraction of the fluorophores bound to the protein. This resulted in a microsecond-range luminescence of the fluorescent acceptors and a shortening of the excited-state lifetime of the phosphorescent aggregates. The process that can be traced by a 1000-fold increase in the acceptor's lifetime mirrors the donor's triplet character. The implications for phosphorescence lifetime imaging are discussed.

17.
ACS Nano ; 12(8): 7629-7637, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30048592

RESUMEN

The ability of nanoparticles to selectively recognize a molecular target constitutes the key toward nanomedicine applications such as drug delivery and diagnostics. The activity of such devices is mediated by the presence of multiple copies of functional molecules on the nanostructure surface. Therefore, understanding the number and the distribution of nanoparticle functional groups is of utmost importance for the rational design of effective materials. Analytical methods are available, but to obtain quantitative information at the level of single particles and single functional sites, i. e., going beyond the ensemble, remains highly challenging. Here we introduce the use of an optical nanoscopy technique, DNA points accumulation for imaging in nanoscale topography (DNA-PAINT), to address this issue. Combining subdiffraction spatial resolution with molecular selectivity and sensitivity, DNA-PAINT provides both geometrical and functional information at the level of a single nanostructure. We show how DNA-PAINT can be used to image and quantify relevant functional proteins such as antibodies and streptavidin on nanoparticles and microparticles with nanometric accuracy in 3D and multiple colors. The generality and the applicability of our method without the need for fluorescent labeling hold great promise for the robust quantitative nanocharacterization of functional nanomaterials.


Asunto(s)
ADN/química , Nanoestructuras/química , Nanotecnología , Imagen Óptica , Microscopía Fluorescente , Tamaño de la Partícula , Propiedades de Superficie
18.
Nature ; 552(7684): 219-224, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211717

RESUMEN

Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking 'adaptor' protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds-the molecular clutches-respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.


Asunto(s)
Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Adhesiones Focales , Integrinas/metabolismo , Ligandos , Modelos Biológicos , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Membrana Celular/química , Matriz Extracelular/química , Regulación de la Expresión Génica , Humanos , Ratones , Miosinas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Docilidad , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Señalizadoras YAP
19.
J Agric Food Chem ; 64(45): 8633-8639, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27785913

RESUMEN

Zinc-substituted myoglobin (ZnMb) is a naturally occurring photosensitizer that generates singlet oxygen with a high quantum yield. Using a combination of photophysical and fluorescence imaging techniques, we demonstrate the interaction of ZnMb with Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. An efficient antibacterial action against S. aureus was observed, with a reduction up to 99.9999% in the number of colony-forming units, whereas no sizable effect was detected against E. coli. Because ZnMb is known to form during the maturation of additive-free not-cooked cured ham, the use of this protein as a built-in photodynamic agent may constitute a viable method for the decontamination of these food products from Gram-positive bacteria.


Asunto(s)
Antibacterianos/farmacología , Contaminación de Alimentos/prevención & control , Mioglobina/farmacología , Zinc/farmacología , Animales , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Caballos , Luz , Pruebas de Sensibilidad Microbiana , Mioglobina/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación
20.
Sci Rep ; 5: 15564, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26494535

RESUMEN

Antibacterial treatments based on photosensitized production of reactive oxygen species is a promising approach to address local microbial infections. Given the small size of bacterial cells, identification of the sites of binding of the photosensitizing molecules is a difficult issue to address with conventional microscopy. We show that the excited state properties of the naturally occurring photosensitizer hypericin can be exploited to perform STED microscopy on bacteria incubated with the complex between hypericin and apomyoglobin, a self-assembled nanostructure that confers very good bioavailability to the photosensitizer. Hypericin fluorescence is mostly localized at the bacterial wall, and accumulates at the polar regions of the cell and at sites of cell wall growth. While these features are shared by Gram-negative and Gram-positive bacteria, only the latter are effectively photoinactivated by light exposure.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Nanoestructuras , Fármacos Fotosensibilizantes/metabolismo , Fracciones Subcelulares/metabolismo , Microscopía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...