Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
bioRxiv ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38464166

3D printed biomaterial implants are revolutionizing personalized medicine for tissue repair, especially in orthopedics. In this study, a radiopaque Bi 2 O 3 doped polycaprolactone ( PCL ) composite is developed and implemented to enable the use of diagnostic X-ray technologies, especially photon counting X-ray computed tomography ( PCCT ), for comprehensive in vivo device monitoring. PCL filament with homogeneous Bi 2 O 3 nanoparticle ( NP ) dispersion (0.8 to 11.7 wt%) are first fabricated. Tissue engineered scaffolds ( TES ) are then 3D printed with the composite filament, optimizing printing parameters for small feature size and severely overhung geometries. These composite TES are characterized via micro-computed tomography ( µ CT ), tensile testing, and a cytocompatibility study, with Bi 2 O 3 mass fractions as low as 2 wt% providing excellent radiographic distinguishability, improved tensile properties, and equivalent cytocompatibility of neat PCL. The excellent radiographic distinguishability is validated in situ by imaging 4 and 7 wt% TES in a mouse model with µCT, showing excellent agreement with in vitro measurements. Subsequently, CT image-derived swine menisci are 3D printed with composite filament and re-implanted in their corresponding swine legs ex vivo . Re-imaging the swine legs via clinical CT allows facile identification of device location and alignment. Finally, the emergent technology of PCCT unambiguously distinguishes implanted menisci in situ.

...