Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Neurobiol Pain ; 14: 100136, 2023.
Article En | MEDLINE | ID: mdl-38099276

The artemin-GFRα3 signaling pathway has been implicated in various painful conditions including migraine, cold allodynia, hyperalgesia, inflammatory bone pain, and mouse knees contain GFRα3-immunoreactive nerve endings. We developed high affinity mouse (REGN1967) and human (REGN5069) GFRα3-blocking monoclonal antibodies and, following in vivo evaluations in mouse models of chronic joint pain (osteoarthritic-like and inflammatory), conducted a first-in-human phase 1 pharmacokinetics (PK) and safety trial of REGN5069 (NCT03645746) in healthy volunteers, and a phase 2 randomized placebo-controlled efficacy and safety trial of REGN5069 (NCT03956550) in patients with knee osteoarthritis (OA) pain. In three commonly used mouse models of chronic joint pain (destabilization of the medial meniscus, intra-articular monoiodoacetate, or Complete Freund's Adjuvant), REGN1967 and REGN5069 attenuated evoked behaviors including tactile allodynia and thermal hyperalgesia without discernably impacting joint pathology or inflammation, prompting us to further evaluate REGN5069 in humans. In the phase 1 study in healthy subjects, the safety profiles of single doses of REGN5069 up to 3000 mg (intravenous) or 600 mg (subcutaneous) were comparable to placebo; PK were consistent with a monoclonal antibody exhibiting target-mediated disposition. In the phase 2 study in patients with OA knee pain, two doses of REGN5069 (100 mg or 1000 mg intravenous every 4 weeks) for 8 weeks failed to achieve the 12-week primary and secondary efficacy endpoints relative to placebo. In addition to possible differences in GFRα3 biology between mice and humans, we highlight here differences in experimental parameters that could have contributed to a different profile of efficacy in mouse models versus human OA pain. Additional research is required to more fully evaluate any potential role of GFRα3 in human pain.

2.
Mol Cancer Ther ; 22(3): 357-370, 2023 03 02.
Article En | MEDLINE | ID: mdl-36861363

Most antibody-drug conjugates (ADC) approved for the treatment of cancer contain protease-cleavable linkers. ADCs that traffic to lysosomes traverse highly acidic late endosomes, while ADCs that recycle to the plasma membrane traffic through mildly acidic sorting and recycling endosomes. Although endosomes have been proposed to process cleavable ADCs, the precise identity of the relevant compartments and their relative contributions to ADC processing remain undefined. Here we show that a METxMET biparatopic antibody internalizes into sorting endosomes, rapidly traffics to recycling endosomes, and slowly reaches late endosomes. In agreement with the current model of ADC trafficking, late endosomes are the primary processing site of MET, EGFR, and prolactin receptor ADCs. Interestingly, recycling endosomes contribute up to 35% processing of the MET and EGFR ADCs in different cancer cells, mediated by cathepsin-L, which localizes to this compartment. Taken together, our findings provide insight into the relationship between transendosomal trafficking and ADC processing and suggest that receptors that traffic through recycling endosomes might be suitable targets for cleavable ADCs.


Cancer Vaccines , Immunoconjugates , Humans , Immunoconjugates/pharmacology , Antibodies , Endosomes , ErbB Receptors
3.
Mol Cancer Ther ; 20(10): 1966-1976, 2021 10.
Article En | MEDLINE | ID: mdl-34315762

Lung cancers harboring mesenchymal-to-epithelial transition factor (MET) genetic alterations, such as exon 14 skipping mutations or high-level gene amplification, respond well to MET-selective tyrosine kinase inhibitors (TKI). However, these agents benefit a relatively small group of patients (4%-5% of lung cancers), and acquired resistance limits response durability. An antibody-drug conjugate (ADC) targeting MET might enable effective treatment of MET-overexpressing tumors (approximately 25% of lung cancers) that do not respond to MET targeted therapies. Using a protease-cleavable linker, we conjugated a biparatopic METxMET antibody to a maytansinoid payload to generate a MET ADC (METxMET-M114). METxMET-M114 promotes substantial and durable tumor regression in xenografts with moderate to high MET expression, including models that exhibit innate or acquired resistance to MET blockers. Positron emission tomography (PET) studies show that tumor uptake of radiolabeled METxMET antibody correlates with MET expression levels and METxMET-M114 efficacy. In a cynomolgus monkey toxicology study, METxMET-M114 was well tolerated at a dose that provides circulating drug concentrations that are sufficient for maximal antitumor activity in mouse models. Our findings suggest that METxMET-M114, which takes advantage of the unique trafficking properties of our METxMET antibody, is a promising candidate for the treatment of MET-overexpressing tumors, with the potential to address some of the limitations faced by the MET function blockers currently in clinical use.


Antibodies, Monoclonal/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Immunoconjugates/pharmacology , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Female , Humans , Immunoconjugates/pharmacokinetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macaca fascicularis , Male , Mice , Mice, SCID , Mutation , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 26(6): 1408-1419, 2020 03 15.
Article En | MEDLINE | ID: mdl-31848185

PURPOSE: Recent clinical data demonstrate that tumors harboring MET genetic alterations (exon 14 skip mutations and/or gene amplification) respond to small-molecule tyrosine kinase inhibitors, validating MET as a therapeutic target. Although antibody-mediated blockade of the MET pathway has not been successful in the clinic, the failures are likely the result of inadequate patient selection strategies as well as suboptimal antibody design. Thus, our goal was to generate a novel MET blocking antibody with enhanced efficacy. EXPERIMENTAL DESIGN: Here, we describe the activity of a biparatopic MET×MET antibody that recognizes two distinct epitopes in the MET Sema domain. We use a combination of in vitro assays and tumor models to characterize the effect of our antibody on MET signaling, MET intracellular trafficking, and the growth of MET-dependent cells/tumors. RESULTS: In MET-driven tumor models, our biparatopic antibody exhibits significantly better activity than either of the parental antibodies or the mixture of the two parental antibodies and outperforms several clinical-stage MET antibodies. Mechanistically, the biparatopic antibody inhibits MET recycling, thereby promoting lysosomal trafficking and degradation of MET. In contrast to the parental antibodies, the biparatopic antibody fails to activate MET-dependent biological responses, consistent with the observation that it recycles inefficiently and induces very transient downstream signaling. CONCLUSIONS: Our results provide strong support for the notion that biparatopic antibodies are a promising therapeutic modality, potentially having greater efficacy than that predicted from the properties of the parental antibodies.


Antibodies, Monoclonal/pharmacology , Epitopes/immunology , Gene Amplification , Neoplasms/therapy , Proto-Oncogene Proteins c-met/metabolism , Animals , Cell Line, Tumor , Epitopes/genetics , Humans , Mice , Mice, SCID , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Protein Transport , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Xenograft Model Antitumor Assays
5.
Mol Cancer Ther ; 13(5): 1345-55, 2014 May.
Article En | MEDLINE | ID: mdl-24634416

EGFR blocking antibodies are approved for the treatment of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Although ERBB3 signaling has been proposed to limit the effectiveness of EGFR inhibitors, the underlying molecular mechanisms are not fully understood. To gain insight into these mechanisms, we generated potent blocking antibodies against ERBB3 (REGN1400) and EGFR (REGN955). We show that EGFR and ERBB3 are coactivated in multiple HNSCC cell lines and that combined blockade of EGFR and ERBB3 inhibits growth of these cell lines more effectively than blockade of either receptor alone. Blockade of EGFR with REGN955 strongly inhibited activation of ERK in HNSCC cell lines, whereas blockade of ERBB3 with REGN1400 strongly inhibited activation of Akt; only the combination of the 2 antibodies blocked both of these essential downstream pathways. We used a HER2 blocking antibody to show that ERBB3 phosphorylation in HNSCC and colorectal cancer cells is strictly dependent on association with HER2, but not EGFR, and that neuregulin 1 activates ERBB3/HER2 signaling to reverse the effect of EGFR blockade on colorectal cancer cell growth. Finally, although REGN1400 and REGN955 as single agents slowed the growth of HNSCC and colorectal cancer xenografts, the combination of REGN1400 plus REGN955 caused significant tumor regression. Our results indicate that activation of the Akt survival pathway by ERBB3/HER2 limits the effectiveness of EGFR inhibition, suggesting that REGN1400, which is currently in a phase I clinical trial, could provide benefit when combined with EGFR blocking antibodies.


Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Head and Neck Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Animals , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Disease Models, Animal , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Mice , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
6.
Biochem J ; 399(1): 141-50, 2006 Oct 01.
Article En | MEDLINE | ID: mdl-16792528

The c-Fes protein tyrosine kinase is implicated in the differentiation of a number of cell types including neuronal, endothelial and myeloid cells. Structurally, Fes consists of a unique N-terminal region, followed by SH2 (Src homology domain 2) and kinase domains. Two coiled-coil (CC) domains (CC1 and CC2) located within the unique N-terminal region are critical regulators of Fes activity in vivo and may function to recruit Fes activators and/or substrates. A yeast two-hybrid screen, utilizing a K-562 cell cDNA library and the Fes CC2 domain as bait, identified an interacting clone encoding the CC domain and B-box motifs (residues 114-357) of the transcriptional co-repressor KRAB-associated protein (KAP)-1. KAP-1(114-357) interacted with full-length Fes in yeast, and the KAP-1 CC domain was sufficient to bind the Fes N-terminal region in Sf-9 cells. Co-expression of Fes with full-length KAP-1 in human 293T cells stimulated Fes autophosphorylation and led to KAP-1 tyrosine phosphorylation. Association of endogenous Fes and KAP-1 was also observed in HL-60 myeloid leukaemia cells. Together, these data identify a novel Fes-KAP-1 interaction, and suggest a dual role for KAP-1 as both a Fes activator and downstream effector.


DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins c-fes/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Animals , Cell Line , DNA-Binding Proteins/genetics , Enzyme Activation , Gene Expression Regulation, Enzymologic , Humans , Insecta , Mutation , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-fes/genetics , Repressor Proteins/genetics , Saccharomyces cerevisiae , Substrate Specificity , Tripartite Motif-Containing Protein 28
7.
J Biol Chem ; 281(13): 8829-35, 2006 Mar 31.
Article En | MEDLINE | ID: mdl-16455651

The human c-fes locus encodes a non-receptor protein-tyrosine kinase implicated in myeloid, vascular endothelial, and neuronal cell differentiation. A recent analysis of the tyrosine kinome in colorectal cancer identified c-fes as one of only seven genes with consistent kinase domain mutations. Although four mutations were identified (M704V, R706Q, V743M, S759F), the consequences of these mutations on Fes kinase activity were not explored. To address this issue, Fes mutants with these substitutions were co-expressed with STAT3 in human 293T cells. Surprisingly, the M704V, R706Q, and V743M mutations substantially reduced Fes autophosphorylation and STAT3 Tyr-705 phosphorylation compared with wild-type Fes, whereas S759F had little effect. These mutations had a similar impact on Fes kinase activity in a yeast expression system, suggesting that they inhibit Fes by affecting kinase domain structure. We have also demonstrated for the first time that endogenous Fes is strongly expressed at the base of colonic crypts where it co-localizes with epithelial cells positive for the progenitor cell marker Musashi-1. In contrast to normal colonic epithelium, Fes expression was reduced or absent in colon tumor sections from most individuals. Fes protein levels were also low or absent in a panel of human colorectal cancer cell lines, including HT-29 and HCT 116 cells. Introduction of Fes into these lines with a recombinant retrovirus suppressed their growth in soft agar. Together, our findings strongly implicate the c-Fes protein-tyrosine kinase as a tumor suppressor rather than a dominant oncogene in colorectal cancer.


Colorectal Neoplasms/enzymology , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-fes/metabolism , Cell Line , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genes, Dominant , Green Fluorescent Proteins/metabolism , HCT116 Cells , HT29 Cells , Humans , Immunoblotting , Immunohistochemistry , Models, Molecular , Mutation , Nerve Tissue Proteins/metabolism , Phosphorylation , Precipitin Tests , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-fes/chemistry , Proto-Oncogene Proteins c-fes/genetics , RNA-Binding Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Retroviridae/genetics , STAT3 Transcription Factor/metabolism , Saccharomyces cerevisiae/genetics , Tyrosine/metabolism
8.
Mol Cell Biol ; 24(21): 9351-8, 2004 Nov.
Article En | MEDLINE | ID: mdl-15485904

The c-Fes protein-tyrosine kinase (Fes) has been implicated in the differentiation of vascular endothelial, myeloid hematopoietic, and neuronal cells, promoting substantial morphological changes in these cell types. The mechanism by which Fes promotes morphological aspects of cellular differentiation is unknown. Using COS-7 cells as a model system, we observed that Fes strongly colocalizes with microtubules in vivo when activated via coiled-coil mutation or by coexpression with an active Src family kinase. In contrast, wild-type Fes showed a diffuse cytoplasmic localization in this system, which correlated with undetectable kinase activity. Coimmunoprecipitation and immunofluorescence microscopy showed that the N-terminal Fes/CIP4 homology (FCH) domain is involved in Fes interaction with soluble unpolymerized tubulin. However, the FCH domain was not required for colocalization with polymerized microtubules in vivo. In contrast, a functional SH2 domain was essential for microtubule localization of Fes, consistent with the strong tyrosine phosphorylation of purified tubulin by Fes in vitro. Using a microtubule nucleation assay, we observed that purified c-Fes also catalyzed extensive tubulin polymerization in vitro. Taken together, these results identify c-Fes as a regulator of the tubulin cytoskeleton that may contribute to Fes-induced morphological changes in myeloid hematopoietic and neuronal cells.


Microtubules/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Tubulin/metabolism , Animals , Biopolymers/chemistry , Biopolymers/metabolism , COS Cells , Catalysis , Cell Division , Cell Line , Chlorocebus aethiops , Demecolcine/pharmacology , Enzyme Activation , Humans , Leucine/genetics , Leucine/metabolism , Lysine/genetics , Lysine/metabolism , Mice , Microtubules/chemistry , Mutation/genetics , Phosphorylation , Protein Binding/drug effects , Protein Structure, Tertiary , Protein Transport , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-fes , Spindle Apparatus/metabolism , Tubulin/chemistry , src Homology Domains/genetics
9.
Mol Cell Endocrinol ; 201(1-2): 1-12, 2003 Mar 28.
Article En | MEDLINE | ID: mdl-12706288

Germ cell development within the mammalian testis requires testosterone stimulation of somatic Sertoli cells via interaction with intracellular androgen receptors (AR). AR expression levels undergo marked changes during spermatogenesis suggesting that the modulation of AR expression is an important mechanism to regulate Sertoli cell responsiveness to testosterone. An analysis of the AR gene promoter revealed three kappaB enhancer elements that interacted with Sertoli cell p50 and RelA NF-kappaB proteins, and the overexpression of these NF-kappaB subunits in Sertoli cells stimulated AR promoter activity. Moreover, TNF-alpha, a secretory product of round spermatids, stimulated NF-kappaB binding to the AR promoter, induced AR promoter activity, and increased endogenous AR expression in primary cultures of Sertoli cells. Given the requirement of testosterone for spermatogenesis and the importance of AR in mediating Sertoli cell responsiveness to testosterone, the stimulation of AR expression by NF-kappaB and TNF-alpha may represent an important regulatory mechanism required to maintain efficient spermatogenesis.


Gene Expression Regulation , NF-kappa B/pharmacology , Promoter Regions, Genetic/genetics , Receptors, Androgen/genetics , Sertoli Cells/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Androgens/pharmacology , Animals , Blotting, Northern , Blotting, Western , Cells, Cultured , Enhancer Elements, Genetic , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Sertoli Cells/metabolism , Transcription, Genetic , Transcriptional Activation , Transfection
10.
Biochemistry ; 42(12): 3567-74, 2003 Apr 01.
Article En | MEDLINE | ID: mdl-12653561

The c-Fes protein-tyrosine kinase regulates the growth and differentiation of diverse cell types, including myeloid hematopoietic cells, vascular endothelial cells, and neurons. Structurally, Fes is composed of a unique N-terminal region with coiled-coil oligomerization motifs, followed by SH2 and kinase domains. Although Fes kinase activity is tightly regulated in cells, the structural basis for its negative regulation is not clear. In this report, c-Fes was expressed in Saccharomyces cerevisiae to determine whether regulation is kinase-intrinsic or dependent upon protein factors found in mammalian cells. Wild-type Fes kinase activity was completely repressed in yeast and did not affect cell growth. Mutation or deletion of the more N-terminal c-Fes coiled-coil domain reversed negative regulation, leading to strong kinase activation and suppression of yeast cell growth. Similarly, replacement of the wild-type SH2 domain with that of v-Src induced strong kinase activation and the growth-inhibitory phenotype. Immunoblotting with phosphospecific antibodies shows that activation of Fes by either mechanism induced autophosphorylation of the activation loop tyrosine residue (Tyr 713). These data support the idea that Fes naturally adopts an inactive conformation in vivo, and that maintenance of the inactive structure requires the coiled-coil and SH2 domains.


Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Amino Acid Substitution , Cell Division , Humans , In Vitro Techniques , Point Mutation , Protein Structure, Tertiary , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-fes , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Sequence Deletion , src Homology Domains
...