Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Neurol Sci ; 45(4): 1635-1643, 2024 Apr.
Article En | MEDLINE | ID: mdl-37875597

Juvenile myoclonic epilepsy (JME) is the most common of the generalized genetic epilepsies, with multiple causal and susceptibility genes; however, its etiopathogenesis is mainly unknown. The toxic effects caused by xenobiotics in cells occur during their metabolic transformation, mainly by enzymes belonging to cytochrome P450. The elimination of these compounds by transporters of the ABC type protects the central nervous system, but their accumulation causes neuronal damage, resulting in neurological diseases. The present study has sought the association between single nucleotide genetic variants of the CYP2C9, CYP2C19, and ABCB1 genes and the development of JME in patients compared to healthy controls. The CC1236 and GG2677 genotypes of ABCB1 in women; allele G 2677, genotypes GG 2677 and CC 3435 in men; the CYP2C19*2A allele, and the CYP2C19*3G/A genotype in both sexes were found to be risk factors for JME. Furthermore, carriers of the TTGGCC genotype combination of the ABCB1 gene (1236/2677/3435) have a 10.5 times higher risk of developing JME than non-carriers. Using the STRING database, we found an interaction between the proteins encoded by these genes and other possible proteins. These findings indicate that the CYP450 system and ABC transporters could interact with other genes in the JME.


Epilepsy, Generalized , Myoclonic Epilepsy, Juvenile , Male , Humans , Female , Myoclonic Epilepsy, Juvenile/genetics , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C19/genetics , Genotype , ATP Binding Cassette Transporter, Subfamily B/genetics
2.
Child Neurol Open ; 9: 2329048X221126361, 2022.
Article En | MEDLINE | ID: mdl-36211619

Lafora disease is a rare refractory epilepsy that results in death. This report highlights two cases of lafora disease and introduces a novel mutation in the patients. A review of the pathophysiology and future therapies is reviewed.

3.
Epilepsy Behav ; 103(Pt A): 106839, 2020 02.
Article En | MEDLINE | ID: mdl-31932179

Lafora disease (LD) is both a fatal childhood epilepsy and a glycogen storage disease caused by recessive mutations in either the Epilepsy progressive myoclonus 2A (EPM2A) or EPM2B genes. Hallmarks of LD are aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) that are a disease driver. The 5th International Lafora Epilepsy Workshop was recently held in Alcala de Henares, Spain. The workshop brought together nearly 100 clinicians, academic and industry scientists, trainees, National Institutes of Health (NIH) representation, and friends and family members of patients with LD. The workshop covered aspects of LD ranging from defining basic scientific mechanisms to elucidating a LD therapy or cure and a recently launched LD natural history study.


Congresses as Topic/trends , Education/trends , Internationality , Lafora Disease/therapy , Animals , Humans , Lafora Disease/epidemiology , Lafora Disease/genetics , Mutation/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Spain/epidemiology
4.
Front Cell Neurosci ; 13: 433, 2019.
Article En | MEDLINE | ID: mdl-31611775

Juvenile myoclonic epilepsy (JME), a lifelong disorder that starts during adolescence, is the most common of genetic generalized epilepsy syndromes. JME is characterized by awakening myoclonic jerks and myoclonic-tonic-clonic (m-t-c) grand mal convulsions. Unfortunately, one third of JME patients have drug refractory m-t-c convulsions and these recur in 70-80% who attempt to stop antiepileptic drugs (AEDs). Behavioral studies documented impulsivity, but also impairment of executive functions relying on organization and feedback, which points to prefrontal lobe dysfunction. Quantitative voxel-based morphometry (VBM) revealed abnormalities of gray matter (GM) volumes in cortical (frontal and parietal) and subcortical structures (thalamus, putamen, and hippocampus). Proton magnetic resonance spectroscopy (MRS) found evidence of dysfunction of thalamic neurons. White matter (WM) integrity was disrupted in corpus callosum and frontal WM tracts. Magnetic resonance imaging (MRI) further unveiled anomalies in both GM and WM structures that were already present at the time of seizure onset. Aberrant growth trajectories of brain development occurred during the first 2 years of JME diagnosis. Because of genetic origin, disease causing variants were sought, first by positional cloning, and most recently, by next generation sequencing. To date, only six genes harboring pathogenic variants (GABRA1, GABRD, EFHC1, BRD2, CASR, and ICK) with Mendelian and complex inheritance and covering a limited proportion of the world population, are considered as major susceptibility alleles for JME. Evidence on the cellular role, developmental and cell-type expression profiles of these six diverse JME genes, point to their pathogenic variants driving the first steps of brain development when cell division, expansion, axial, and tangential migration of progenitor cells (including interneuron cortical progenitors) sculpture subtle alterations in brain networks and microcircuits during development. These alterations may explain "microdysgenesis" neuropathology, impulsivity, executive dysfunctions, EEG polyspike waves, and awakening m-t-c convulsions observed in JME patients.

6.
Front Mol Neurosci ; 11: 234, 2018.
Article En | MEDLINE | ID: mdl-30042658

The building of the brain is a multistep process that requires the coordinate expression of thousands of genes and an intense nucleocytoplasmic transport of RNA and proteins. This transport is mediated by karyopherins that comprise importins and exportins. Here, we investigated the role of the ß-importin, importin-8 (IPO8) during mouse cerebral corticogenesis as several of its cargoes have been shown to be essential during this process. First, we showed that Ipo8 mRNA is expressed in mouse brain at various embryonic ages with a clear signal in the sub-ventricular/ventricular zone (SVZ/VZ), the cerebral cortical plate (CP) and the ganglionic eminences. We found that acute knockdown of IPO8 in cortical progenitors reduced both their proliferation and cell cycle exit leading to the increase in apical progenitor pool without influencing the number of basal progenitors (BPs). Projection neurons ultimately reached their appropriate cerebral cortical layer, but their dendritogenesis was specifically affected, resulting in neurons with reduced dendrite complexity. IPO8 knockdown also slowed the migration of cortical interneurons. Together, our data demonstrate that IPO8 contribute to the coordination of several critical steps of cerebral cortex development. These results suggest that the impairment of IPO8 function might be associated with some diseases of neuronal migration defects.

7.
N Engl J Med ; 378(11): 1018-1028, 2018 03 15.
Article En | MEDLINE | ID: mdl-29539279

BACKGROUND: In juvenile myoclonic epilepsy, data are limited on the genetic basis of networks promoting convulsions with diffuse polyspikes on electroencephalography (EEG) and the subtle microscopic brain dysplasia called microdysgenesis. METHODS: Using Sanger sequencing, we sequenced the exomes of six members of a large family affected with juvenile myoclonic epilepsy and confirmed cosegregation in all 37 family members. We screened an additional 310 patients with this disorder for variants on DNA melting-curve analysis and targeted real-time DNA sequencing of the gene encoding intestinal-cell kinase ( ICK). We calculated Bayesian logarithm of the odds (LOD) scores for cosegregating variants, odds ratios in case-control associations, and allele frequencies in the Genome Aggregation Database. We performed functional tests of the effects of variants on mitosis, apoptosis, and radial neuroblast migration in vitro and conducted video-EEG studies in mice lacking a copy of Ick. RESULTS: A variant, K305T (c.914A→C), cosegregated with epilepsy or polyspikes on EEG in 12 members of the family affected with juvenile myoclonic epilepsy. We identified 21 pathogenic ICK variants in 22 of 310 additional patients (7%). Four strongly linked variants (K220E, K305T, A615T, and R632X) impaired mitosis, cell-cycle exit, and radial neuroblast migration while promoting apoptosis. Tonic-clonic convulsions and polyspikes on EEG resembling seizures in human juvenile myoclonic epilepsy occurred more often in knockout heterozygous mice than in wild-type mice (P=0.02) during light sleep with isoflurane anesthesia. CONCLUSIONS: Our data provide evidence that heterozygous variants in ICK caused juvenile myoclonic epilepsy in 7% of the patients included in our analysis. Variant ICK affects cell processes that help explain microdysgenesis and polyspike networks observed on EEG in juvenile myoclonic epilepsy. (Funded by the National Institutes of Health and others.).


Mutation , Myoclonic Epilepsy, Juvenile/genetics , Protein Serine-Threonine Kinases/genetics , Adolescent , Animals , Bayes Theorem , Case-Control Studies , Child , Child, Preschool , Chromosomes, Human, Pair 6 , Disease Models, Animal , Electroencephalography , Female , Heterozygote , Humans , Infant , Infant, Newborn , Male , Malformations of Cortical Development/genetics , Mice , Mice, Knockout , Myoclonic Epilepsy, Juvenile/physiopathology , Sequence Analysis, DNA , Young Adult
8.
Genet Med ; 19(2): 144-156, 2017 02.
Article En | MEDLINE | ID: mdl-27467453

PURPOSE: EFHC1 variants are the most common mutations in inherited myoclonic and grand mal clonic-tonic-clonic (CTC) convulsions of juvenile myoclonic epilepsy (JME). We reanalyzed 54 EFHC1 variants associated with epilepsy from 17 cohorts based on National Human Genome Research Institute (NHGRI) and American College of Medical Genetics and Genomics (ACMG) guidelines for interpretation of sequence variants. METHODS: We calculated Bayesian LOD scores for variants in coinheritance, unconditional exact tests and odds ratios (OR) in case-control associations, allele frequencies in genome databases, and predictions for conservation/pathogenicity. We reviewed whether variants damage EFHC1 functions, whether efhc1-/- KO mice recapitulate CTC convulsions and "microdysgenesis" neuropathology, and whether supernumerary synaptic and dendritic phenotypes can be rescued in the fly model when EFHC1 is overexpressed. We rated strengths of evidence and applied ACMG combinatorial criteria for classifying variants. RESULTS: Nine variants were classified as "pathogenic," 14 as "likely pathogenic," 9 as "benign," and 2 as "likely benign." Twenty variants of unknown significance had an insufficient number of ancestry-matched controls, but ORs exceeded 5 when compared with racial/ethnic-matched Exome Aggregation Consortium (ExAC) controls. CONCLUSIONS: NHGRI gene-level evidence and variant-level evidence establish EFHC1 as the first non-ion channel microtubule-associated protein whose mutations disturb R-type VDCC and TRPM2 calcium currents in overgrown synapses and dendrites within abnormally migrated dislocated neurons, thus explaining CTC convulsions and "microdysgenesis" neuropathology of JME.Genet Med 19 2, 144-156.


Calcium-Binding Proteins/genetics , Myoclonic Epilepsy, Juvenile/genetics , Seizures/genetics , Animals , Dendrites/pathology , Exome , Gene Frequency , Humans , Mice , Mice, Knockout , Mutation , Myoclonic Epilepsy, Juvenile/physiopathology , National Human Genome Research Institute (U.S.) , Neurons/pathology , Pedigree , Polymorphism, Single Nucleotide , Seizures/physiopathology , Synapses/pathology , United States
9.
Epilepsy Behav ; 61: 34-40, 2016 08.
Article En | MEDLINE | ID: mdl-27300146

Juvenile myoclonic epilepsy (JME) is a genetic generalized epilepsy accounting for 3-12% of adult cases of epilepsy. Valproate has proven to be the first-choice drug in JME for controlling the most common seizure types: myoclonic, absence, and generalized tonic-clonic (GTC). In this retrospective study, we analyzed seizure outcome in patients with JME using valproate monotherapy for a minimum period of one year. Low valproate dose was considered to be 1000mg/day or lower, while serum levels were considered to be low if they were at or below 50mcg/dl. One hundred three patients met the inclusion criteria. Fifty-six patients (54.4%) were female. The current average age was 28.4±7.4years, while the age of epilepsy onset was 13.6±2.9years. Most patients corresponded to the subsyndrome of classic JME. Forty-six (44.7%) patients were free from all seizure types, and 76 (73.7%) patients were free from GTC seizures. No significant difference was found in seizure freedom among patients using a low dose of valproate versus a high dose (p=0.535) or among patients with low blood levels versus high blood levels (p=0.69). In patients with JME, it seems appropriate to use low doses of valproate (500mg to 1000mg) for initial treatment and then to determine if freedom from seizures was attained.


Anticonvulsants/administration & dosage , Anticonvulsants/therapeutic use , Myoclonic Epilepsy, Juvenile/drug therapy , Valproic Acid/administration & dosage , Valproic Acid/therapeutic use , Adolescent , Adult , Age of Onset , Anticonvulsants/blood , Child , Dose-Response Relationship, Drug , Electroencephalography , Female , Humans , Male , Middle Aged , Patient Compliance , Retrospective Studies , Risk Factors , Treatment Outcome , Valproic Acid/blood , Young Adult
10.
Mol Genet Genomic Med ; 4(2): 197-210, 2016 Mar.
Article En | MEDLINE | ID: mdl-27066514

Juvenile myoclonic epilepsy (JME), the most common genetic epilepsy, remains enigmatic because it is considered one disease instead of several diseases. We ascertained three large multigenerational/multiplex JME pedigrees from Honduras with differing JME subsyndromes, including Childhood Absence Epilepsy evolving to JME (CAE/JME; pedigree 1), JME with adolescent onset pyknoleptic absence (JME/pA; pedigree 2), and classic JME (cJME; pedigree 3). All phenotypes were validated, including symptomatic persons with various epilepsies, asymptomatic persons with EEG 3.5-6.0 Hz polyspike waves, and asymptomatic persons with normal EEGs. Two-point parametric linkage analyses were performed with 5185 single-nucleotide polymorphisms on individual pedigrees and pooled pedigrees using four diagnostic models based on epilepsy/EEG diagnoses. Haplotype analyses of the entire genome were also performed for each individual. In pedigree 1, haplotyping identified a 34 cM region in 2q21.2-q31.1 cosegregating with all affected members, an area close to 2q14.3 identified by linkage (Z max = 1.77; pedigree 1). In pedigree 2, linkage and haplotyping identified a 44 cM cosegregating region in 13q13.3-q31.2 (Z max = 3.50 at 13q31.1; pooled pedigrees). In pedigree 3, haplotyping identified a 6 cM cosegregating region in 17q12. Possible cosegregation was also identified in 13q14.2 and 1q32 in pedigree 3, although this could not be definitively confirmed due to the presence of uninformative markers in key individuals. Differing chromosome regions identified in specific JME subsyndromes may contain separate JME disease-causing genes, favoring the concept of JME as several distinct diseases. Whole-exome sequencing will likely identify a CAE/JME gene in 2q21.2-2q31.1, a JME/pA gene in 13q13.3-q31.2, and a cJME gene in 17q12.

11.
Epilepsy Res ; 108(9): 1501-10, 2014 Nov.
Article En | MEDLINE | ID: mdl-25246353

Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy with classic adolescent onset of stimuli sensitive seizures. Patients typically deteriorate rapidly with dementia, ataxia, vegetative failure and death by 25 years of age. LD is caused by homozygous mutations in EPM2A or EPM2B genes. We found four novel mutations in EPM2A - three in exon 4 (Q247X, H265R G279C) and one in exon 1 (Y86D) - and a previously described mutation in exon 4 (R241X). These five EPM2A mutations were found in four index cases and affected relatives. Patient 1 with classic LD was doubly heterozygous for H265R and R241X in exon 4; while Patient 2, who also had classic LD, was homozygous for Q247X in exon 4. Patient 3 with classic LD was homozygous for Y86D in exon 1, but the same mutation in his affected brother manifested an atypical earlier childhood onset. For the first time, we describe a later onset and slower progression of EPM2A-deficient LD seen in Patient 4 and her three sisters who were doubly heterozygous for R241X and G279C in exon 4. In these sisters, seizures started later at 21 to 28 years of age and progressed slowly with patients living beyond 30 years of age. Our observations suggest that variations in phenotypes of EPM2A-deficient LD, like an earlier childhood or adolescent or later adult onset with a rapid or slower course, depend on a second modifying factor separate from pathogenicity or exon location of EPM2A mutations. A modifying gene amongst the patient's genetic background or environmental factors may condition age of onset and rapid or slow progression of LD.


Lafora Disease/genetics , Mutation/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Adult , DNA Mutational Analysis , Electroencephalography , Family Health , Female , Humans , Lafora Disease/diagnosis , Male
12.
Clin Biochem ; 46(18): 1869-76, 2013 Dec.
Article En | MEDLINE | ID: mdl-24012855

OBJECTIVES: Lafora disease is a rare yet invariably fatal form of progressive neurodegenerative epilepsy resulting from mutations in the phosphatase laforin. Several therapeutic options for Lafora disease patients are currently being explored, and these therapies would benefit from a biochemical means of assessing functional laforin activity following treatment. To date, only clinical outcomes such as decreases in seizure frequency and severity have been used to indicate success of epilepsy treatment. However, these qualitative measures exhibit variability and must be assessed over long periods of time. In this work, we detail a simple and sensitive bioassay that can be used for the detection of functional endogenous laforin from human and mouse tissue. DESIGN AND METHODS: We generated antibodies capable of detecting and immunoprecipitating endogenous laforin. Following laforin immunoprecipitation, laforin activity was assessed via phosphatase assays using para-nitrophenylphosphate (pNPP) and a malachite green-based assay specific for glucan phosphatase activity. RESULTS: We found that antibody binding to laforin does not impede laforin activity. Furthermore, the malachite green-based glucan phosphatase assay used in conjunction with a rabbit polyclonal laforin antibody was capable of detecting endogenous laforin activity from human and mouse tissues. Importantly, this assay discriminated between laforin activity and other phosphatases. CONCLUSIONS: The bioassay that we have developed utilizing laforin antibodies and an assay specific for glucan phosphatase activity could prove valuable in the rapid detection of functional laforin in patients to which novel Lafora disease therapies have been administered.


Biological Assay/methods , Dual-Specificity Phosphatases/analysis , Lafora Disease/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/analysis , Animals , Dual-Specificity Phosphatases/immunology , Dual-Specificity Phosphatases/metabolism , Hep G2 Cells , Humans , Immunoprecipitation , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Nitrophenols/chemistry , Organophosphorus Compounds/chemistry , Protein Tyrosine Phosphatases, Non-Receptor/immunology , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Rabbits , Rosaniline Dyes/chemistry , Skin/metabolism
13.
Epilepsy Behav ; 28 Suppl 1: S52-7, 2013 Jul.
Article En | MEDLINE | ID: mdl-23756480

Introduced into a specific population, a juvenile myoclonic epilepsy (JME) mutation generates linkage disequilibrium (LD). Linkage disequilibrium is strongest when the JME mutation is of recent origin, still "hitchhiking" alleles surrounding it, as a haplotype into the next thousands of generations. Recombinations decay LD over tens of thousands of generations causing JME alleles to produce smaller genetic displacements, requiring other genes or environment to produce an epilepsy phenotype. Family-based linkage analysis captures rare epilepsy alleles and their "hitchhiking" haplotypes, transmitted as Mendelian traits, supporting the common disease/multiple rare allele model. Genome-wide association studies identify JME alleles whose linkage disequilibrium has decayed through thousands of generations and are sorting out the common disease/common allele versus rare allele models. Five Mendelian JME genes have been identified, namely, CACNB4, CASR, GABRa1, GABRD, and Myoclonin1/EFHC1. Three SNP alleles in BRD2, Cx-36, and ME2 and microdeletions in 15q13.3, 15q11.2, and 16p13.11 also contribute risk to JME.


Genetic Predisposition to Disease/genetics , Mutation/genetics , Myoclonic Epilepsy, Juvenile/genetics , Alleles , Animals , Genome-Wide Association Study , Haplotypes , Humans
14.
Epilepsy Behav ; 28 Suppl 1: S87-90, 2013 Jul.
Article En | MEDLINE | ID: mdl-23756490

An international workshop on juvenile myoclonic epilepsy (JME) was conducted in Avignon, France in May 2011. During that workshop, a group of 45 experts on JME, together with one of the founding fathers of the syndrome of JME ("Janz syndrome"), Prof. Dr. Dieter Janz from Berlin, reached a consensus on diagnostic criteria and management of JME. The international experts on JME proposed two sets of criteria, which will be helpful for both clinical and scientific purposes. Class I criteria encompass myoclonic jerks without loss of consciousness exclusively occurring on or after awakening and associated with typical generalized epileptiform EEG abnormalities, with an age of onset between 10 and 25. Class II criteria allow the inclusion of myoclonic jerks predominantly occurring after awakening, generalized epileptiform EEG abnormalities with or without concomitant myoclonic jerks, and a greater time window for age at onset (6-25years). For both sets of criteria, patients should have a clear history of myoclonic jerks predominantly occurring after awakening and an EEG with generalized epileptiform discharges supporting a diagnosis of idiopathic generalized epilepsy. Patients with JME require special management because their epilepsy starts in the vulnerable period of adolescence and, accordingly, they have lifestyle issues that typically increase the likelihood of seizures (sleep deprivation, exposure to stroboscopic flashes in discos, alcohol intake, etc.) with poor adherence to antiepileptic drugs (AEDs). Results of an inventory of the different clinical management strategies are given. This article is part of a supplemental special issue entitled Juvenile Myoclonic Epilepsy: What is it Really?


Consensus , Disease Management , Myoclonic Epilepsy, Juvenile/diagnosis , Myoclonic Epilepsy, Juvenile/therapy , Humans , International Cooperation
15.
Hum Mol Genet ; 21(23): 5106-17, 2012 Dec 01.
Article En | MEDLINE | ID: mdl-22926142

Heterozygous mutations in Myoclonin1/EFHC1 cause juvenile myoclonic epilepsy (JME), the most common form of genetic generalized epilepsies, while homozygous F229L mutation is associated with primary intractable epilepsy in infancy. Heterozygous mutations in adolescent JME patients produce subtle malformations of cortical and subcortical architecture, whereas homozygous F229L mutation in infancy induces severe brain pathology and death. However, the underlying pathological mechanisms for these observations remain unknown. We had previously demonstrated that EFHC1 is a microtubule-associated protein (MAP) involved in cell division and radial migration during cerebral corticogenesis. Here, we show that JME mutations, including F229L, do not alter the ability of EFHC1 to colocalize with the centrosome and the mitotic spindle, but act in a dominant-negative manner to impair mitotic spindle organization. We also found that mutants EFHC1 expression disrupted radial and tangential migration by affecting the morphology of radial glia and migrating neurons. These results show how Myoclonin1/EFHC1 mutations disrupt brain development and potentially produce structural brain abnormalities on which epileptogenesis is established.


Brain/embryology , Brain/metabolism , Calcium-Binding Proteins/genetics , Mutation , Myoclonic Epilepsy, Juvenile/embryology , Myoclonic Epilepsy, Juvenile/genetics , Animals , Calcium-Binding Proteins/metabolism , Cell Cycle/genetics , Cell Line , Cell Movement/genetics , Cell Proliferation , Humans , Intracellular Space/metabolism , Mice , Neuroglia/metabolism , Neurons/metabolism , Protein Transport , Rats , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Stem Cells/metabolism
16.
Epilepsia ; 53(8): 1450-6, 2012 Aug.
Article En | MEDLINE | ID: mdl-22765836

PURPOSE: The ß3 subunit of the γ-aminobutyric acid type A receptors (GABA(A) -Rs) is an essential component of GABA(A) -Rs in fetal, perinatal, and adult mammalian brain. Various transcripts of the ß3 subunit gene (GABRB3) produce various proteins with different N-termini. Rare variants in this N-terminus (exon 1A and exon 2) of GABRB3 protein segregate in affected family members of two multigeneration-multiplex families with remitting childhood absence epilepsy (rCAE), suggesting GABRB3 is a major Mendelian epilepsy gene for rare families with CAE. Therefore, the N-terminus of GABRB3 could be important for GABRB3 regulation in development, and its alteration could produce rCAE. Herein we determine if single nucleotide polymorphisms (SNPs) within the 1,148-bp region upstream from exon 1A influence the expression of GABRB3. METHODS: We studied luciferase reporter expression for promoter activity, 1,148-bp upstream from exon 1A, using human embryonic kidney 293 cells. We generated constructs of the promoter region and compared different SNP haplotypes in 48 patients with rCAE. Next, we compared frequencies of rs20317, located in the core promoter region, and rs4906902, located in the enhancer region between 48 patients with rCAE and >500 healthy controls matched for ethnicity and ancestral origin. KEY FINDINGS: Highest luciferase expression occurred 230-bp upstream of exon 1A. The construct that excluded this region lost luciferase activity. Therefore, this region contains the core promoter of exon 1A. Allele C but not allele G (rs20317) significantly increased luciferase expression activity. Allele C creates binding motifs for cMYB and EGR-3. Longer constructs overlapping this region have a binding motif for REST (RE1-silencing transcription factor), a critical epigenetic modulator for neuronal genes. REST represses expression of neuronal genes in nonneuronal tissues, resulting in reduced luciferase expression activity. Even in the suppressed condition, the longer construct enhanced luciferase expression activity of the shorter construct, which excluded the distal end containing rs4906902. However, allele frequencies of rs20317 and rs4906902 were not significantly associated with 48 rCAE patients in comparison to >500 controls matched for ethnicity and ancestral origin. SIGNIFICANCE: Common SNPs in the promoter region increase luciferase expression activity. An epigenetic modulator, REST, specifically alters expression of GABRB3 exon 1A transcripts, suggesting epigenetic regulation by REST dominantly controls the expression of GABRB3 variant 2 transcript in early life GABA(A) signaling. Abnormal epigenetic regulation could be involved in absence seizures.


Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Receptors, GABA-A/genetics , Alleles , Epilepsy, Absence/genetics , HEK293 Cells , Haplotypes , Humans , Luciferases/metabolism , Repressor Proteins/genetics
17.
Seizure ; 21(7): 550-4, 2012 Sep.
Article En | MEDLINE | ID: mdl-22727576

PURPOSE: The purpose of this study was to identify the prevalence of mutations in the Myoclonin1/EFHC1 gene in Mexican patients with juvenile myoclonic epilepsy (JME). METHOD: We studied forty-one patients at the National Institute of Neurology and Neurosurgery in Mexico City and 100 healthy controls. DNA was extracted from the peripheral venous blood of all participants. The exons of EFHC1 were then amplified and sequenced. RESULTS: We found three new putative mutations, all of which were heterozygous missense mutations located in exon 3. The first identified mutation, 352C>T, produces a R118C change in the protein and cosegregated in the patient's affected father and brother. The second identified mutation, 544C>T, produces a R182L change in the protein and was found in the patient's asymptomatic father. The third identified mutation, 458>A, produces a R153Q change in the protein and was also found in the patient's father. These mutations were not found in controls. CONCLUSIONS: The frequency of Myoclonin1/EFHC1 mutations in our sample is 7.3%. Thus, we conclude that mutations in the Myoclonin1/EFHC1 gene are an important cause of JME in Mexican patients.


Calcium-Binding Proteins/genetics , Myoclonic Epilepsy, Juvenile/genetics , Adolescent , Amino Acid Sequence , Base Sequence , DNA Mutational Analysis , Female , Humans , Male , Mexico , Molecular Sequence Data , Mutation, Missense , Pedigree , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
19.
Exp Neurol ; 236(1): 131-40, 2012 Jul.
Article En | MEDLINE | ID: mdl-22542948

Lafora disease (LD) is an autosomal recessive, always fatal progressive myoclonus epilepsy with rapid cognitive and neurologic deterioration. One of the pathological hallmarks of LD is the presence of cytoplasmic PAS+polyglucosan inclusions called Lafora bodies (LBs). Current clinical and neuropathological views consider LBs to be the cause of neurological derangement of patients. A systematic study of the ontogeny and structural features of the LBs has not been done in the past. Therefore, we undertook a detailed microscopic analysis of the neuropile of a Laforin-deficient (epm2a-/-) mouse model. Wild type and epm2a-/- mice were sacrificed at different ages and their encephalon processed for light microscopy. Luxol-fast-blue, PAS, Bielschowski techniques, as well as immunocytochemistry (TUNEL, Caspase-3, Apaf-1, Cytochrome-C and Neurofilament L antibodies) were used. Young null mice (11 days old) showed necrotic neuronal death in the absence of LBs. Both cell death and LBs showed a progressive increment in size and number with age. Type I LBs emerged at two weeks of age and were distributed in somata and neurites. Type II LBs appeared around the second month of age and always showed a complex architecture and restricted to neuronal somata. Their number was considerably less than type I LBs. Bielschowski method showed neurofibrillary degeneration and senile-like plaques. These changes were more prominent in the hippocampus and ventral pons. Neurofibrillary tangles were already present in 11 days-old experimental animals, whereas senile-like plaques appeared around the third to fourth month of life. The encephalon of null mice was not uniformly affected: Diencephalic structures were spared, whereas cerebral cortex, basal ganglia, pons, hippocampus and cerebellum were notoriously affected. This uneven distribution was present even within the same structure, i.e., hippocampal sectors. Of special relevance, was the observation of the presence of immunoreactivity to neurofilament L on the external rim of type II LBs. Perhaps, type II LB is not the end point of a metabolic abnormality. Instead, we suggest that type II LB is a highly specialized structural and functional entity that emerges as a neuronal response to major carbohydrate metabolism impairment. Early necrotic cell death, neurocytoskeleton derangement, different structural and probably functional profiles for both forms of LBs, a potential relationship between the external rim of the LB type II and the cytoskeleton and an uneven distribution of these abnormalities indicate that LD is both a complex neurodegenerative disease and a glycogen metabolism disorder. Our findings are critical for future studies on disease mechanisms and therapies for LD. Interestingly, the neurodegenerative changes observed in this LD model can also be useful for understanding the process of dementia.


Cytoskeleton/pathology , Dual-Specificity Phosphatases/genetics , Lafora Disease/genetics , Lafora Disease/pathology , Nerve Degeneration/pathology , Neurons/pathology , Animals , Basal Ganglia/pathology , Brain Stem/pathology , Cytoplasm/pathology , Disease Models, Animal , Female , Hippocampus/pathology , Lafora Disease/metabolism , Male , Mice , Mice, Mutant Strains , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Neurofibrillary Tangles/pathology , Neuropil/pathology , Phenotype , Plaque, Amyloid/pathology , Protein Tyrosine Phosphatases, Non-Receptor , Ventral Tegmental Area/pathology
20.
Hum Mol Genet ; 20(21): 4248-57, 2011 Nov 01.
Article En | MEDLINE | ID: mdl-21835885

Mutations in the EFHC1 gene have been linked to juvenile myoclonic epilepsy. To understand EFHC1 function in vivo, we generated knockout Drosophila for the fly homolog Defhc1.1. We found that the neuromuscular junction synapse of Defhc1.1 mutants displays an increased number of satellite boutons resulting in increased spontaneous neurotransmitter release. Defhc1.1 binds to microtubules in vitro and overlaps in vivo with axonal and synaptic microtubules. Elimination of Defhc1.1 from synaptic terminals reduces the number of microtubule loops, suggesting that Defhc1.1 is a negative regulator of microtubule dynamics. In fact, pharmacological treatment of Defhc1.1 mutants with vinblastine, an inhibitor of microtubule dynamics, suppresses the satellite bouton phenotype. Furthermore, Defhc1.1 mutants display overgrowth of the dendritic arbor and Defhc1.1 overexpression reduces dendrite elaboration. These results suggest that Defhc1.1 functions as an inhibitor of neurite growth by finely tuning the microtubule cytoskeleton dynamics and that EFHC1-dependent juvenile myoclonic epilepsy may result from augmented spontaneous neurotransmitter release due to overgrowth of neuronal processes.


Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Microtubule Proteins/metabolism , Myoclonic Epilepsy, Juvenile/genetics , Sequence Homology, Amino Acid , Animals , Dendritic Spines/metabolism , Drosophila Proteins/genetics , Evoked Potentials , Microtubule Proteins/genetics , Microtubules/metabolism , Mutation/genetics , Myoclonic Epilepsy, Juvenile/pathology , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Protein Binding
...