Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 78
1.
Life Sci Alliance ; 7(8)2024 Aug.
Article En | MEDLINE | ID: mdl-38802246

A continuous supply of energy is an essential prerequisite for survival and represents the highest priority for the cell. We hypothesize that cell differentiation is a process of optimization of energy flow in a changing environment through phenotypic adaptation. The mechanistic basis of this hypothesis is provided by the established link between core energy metabolism and epigenetic covalent modifications of chromatin. This theory predicts that early metabolic perturbations impact subsequent differentiation. To test this, we induced transient metabolic perturbations in undifferentiated human hematopoietic cells using pharmacological inhibitors targeting key metabolic reactions. We recorded changes in chromatin structure and gene expression, as well as phenotypic alterations by single-cell ATAC and RNA sequencing, time-lapse microscopy, and flow cytometry. Our observations suggest that these metabolic perturbations are shortly followed by alterations in chromatin structure, leading to changes in gene expression. We also show that these transient fluctuations alter the differentiation potential of the cells.


Cell Differentiation , Chromatin , Energy Metabolism , Hematopoietic Stem Cells , Humans , Cell Differentiation/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Chromatin/metabolism , Chromatin/genetics , Epigenesis, Genetic , Adaptation, Physiological , Single-Cell Analysis/methods
3.
Clin Immunol ; 255: 109730, 2023 10.
Article En | MEDLINE | ID: mdl-37562724

Aging is associated with bone marrow (BM) inflammaging and, in some individuals, with the onset of clonal hematopoiesis (CH) of indeterminate potential. In this study conducted on 94 strictly healthy volunteers (18 to 80 yo), we measured BM and peripheral blood (PB) plasma levels of 49 hematopoietic and inflammatory cytokines. With aging, 7 cytokines increased in BM (FLT3L, CXCL9, HGF, FGF-2, CCL27, IL-16, IL-18) and 8 decreased (G-CSF, TNF, IL-2, IL-15, IL-17A, CCL7, IL-4, IL-10). In PB, 10 cytokines increased with age (CXCL9, FLT3L, CCL27, CXCL10, HGF, CCL11, IL-16, IL-6, IL-1 beta, CCL2). CH was associated with higher BM levels of MIF and IL-1 beta, lower BM levels of IL-9 and IL-5 and higher PB levels of IL-15, VEGF-A, IL-2, CXCL8, CXCL1 and G-CSF. These reference values provide a useful tool to investigate anomalies related to inflammaging and potentially leading to the onset of age-related myeloid malignancies or inflammatory conditions.


Bone Marrow , Cytokines , Humans , Interleukin-1beta , Interleukin-15 , Clonal Hematopoiesis , Interleukin-16 , Interleukin-2 , Granulocyte Colony-Stimulating Factor , Bone Marrow Cells , Hematopoiesis
4.
Eur J Immunol ; 53(9): e2250334, 2023 09.
Article En | MEDLINE | ID: mdl-37377335

Bone marrow (BM) long-lived plasma cells (PCs) are essential for long-term protection against infection, and their persistence within this organ relies on interactions with Cxcl12-expressing stromal cells that are still not clearly identified. Here, using single cell RNAseq and in silico transinteractome analyses, we identified Leptin receptor positive (LepR+ ) mesenchymal cells as the stromal cell subset most likely to interact with PCs within the BM. Moreover, we demonstrated that depending on the isotype they express, PCs may use different sets of integrins and adhesion molecules to interact with these stromal cells. Altogether, our results constitute an unprecedented characterization of PC subset stromal niches and open new avenues for the specific targeting of BM PCs based on their isotype.


Bone Marrow , Mesenchymal Stem Cells , Bone Marrow/metabolism , Plasma Cells , Stromal Cells , Cell Adhesion Molecules/metabolism , Bone Marrow Cells
5.
Haematologica ; 108(6): 1515-1529, 2023 06 01.
Article En | MEDLINE | ID: mdl-36727400

Germline GATA2 mutations predispose to myeloid malignancies resulting from the progressive acquisition of additional somatic mutations. Here we describe clinical and biological features of 78 GATA2-deficient patients. Hematopoietic stem and progenitor cell phenotypic characterization revealed an exhaustion of myeloid progenitors. Somatic mutations in STAG2, ASXL1 and SETBP1 genes along with cytogenetic abnormalities (monosomy 7, trisomy 8, der(1;7)) occurred frequently in patients with GATA2 germline mutations. Patients were classified into three hematopoietic spectra based on bone marrow cytomorphology. No somatic additional mutations were detected in patients with normal bone marrow (spectrum 0), whereas clonal hematopoiesis mediated by STAG2 mutations was frequent in those with a hypocellular and/or myelodysplastic bone marrow without excess blasts (spectrum 1). Finally, SETBP1, RAS pathway and RUNX1 mutations were predominantly associated with leukemic transformation stage (spectrum 2), highlighting their implications in the transformation process. Specific somatic alterations, potentially providing distinct selective advantages to affected cells, are therefore associated with the clinical/hematological evolution of GATA2 syndrome. Our study not only suggests that somatic genetic profiling will help clinicians in their management of patients, but will also clarify the mechanism of leukemogenesis in the context of germline GATA2 mutations.


GATA2 Deficiency , Myeloproliferative Disorders , Humans , GATA2 Deficiency/diagnosis , GATA2 Deficiency/genetics , Myeloproliferative Disorders/genetics , Mutation , Bone Marrow , Germ-Line Mutation , GATA2 Transcription Factor/genetics
6.
Haematologica ; 108(1): 61-68, 2023 01 01.
Article En | MEDLINE | ID: mdl-35924580

Chemotherapy resistance is the main cause of treatment failure in acute myeloid leukemia (AML) and has been related to ATP-binding cassette (ABC) transporter activity. However, the links between ABC activity, immunophenotype, and molecular AML parameters have been poorly evaluated. Moreover, the prognostic value of ABC activity, when compared to new molecular markers, is unknown. Here we investigated the links between ABC activity, as evaluated by JC-1 +/- cyclosporine A assay, and immunophenotypic, cytogenetic, molecular, and targeted next-generation sequencing features in 361 AML patients. High ABC activity was found in 164 patients and was significantly associated with less proliferating disease, an immature immunophenotype (expression of CD34, HLA-DR, CD117, CD13), and gene mutations defining AML as belonging to secondary-type ontogenic groups. Low ABC activity was associated with more mature myeloid differentiation (CD34-, cyMPO+, CD15+, CD33+) or monocytic commitment (CD64+, CD4+weak, CD14+), with NPM1 mutations, KMT2A rearrangements, and core-binding factor gene fusions, hallmarks of the de novo-type AML ontogeny. ABC activity was one of the major factors we identified using a random forest model for early prediction of AML ontogeny. In the 230 patients evaluated at diagnosis and intensively treated, high ABC activity was a predictive factor for primary resistance, and in multivariate analysis including full molecular data, an independent factor for event-free survival (P=0.0370). JC-1 +/- cyclosporine A assay could be used at diagnosis to predict AML ontogeny and to complete prognosis evaluation in addition to new molecular markers.


Cyclosporine , Leukemia, Myeloid, Acute , Humans , Adult , Cyclosporine/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , HLA-DR Antigens , Antigens, CD34 , Prognosis , Immunophenotyping
9.
10.
Leuk Lymphoma ; 63(9): 2171-2179, 2022 Sep.
Article En | MEDLINE | ID: mdl-35459427

We evaluated prognostic factors in 83 intensively treated adult patients with NPM1 mutated AML. Targeted next-generation sequencing revealed high frequency of co-mutations in epigenetic modifiers or proliferation pathways. NPM1 minimal residual disease (MRD), assessed in bone marrow by specific polymerase chain reaction after one chemotherapy course, was >0.01% in 50 patients considered poor responders (PR). On multivariate analysis, including all variables with a p value <.1 on univariate analysis, age >60, performance status (PS) ≥1, presence of FLT3 mutations, DNMT3A-R882, and PR status, were independently associated with lower leukemia-free survival. Age >60, a previous hematological disease and PR status were independent negative predictive factors for overall survival. In our study, early NPM1 MRD was confirmed as an important prognostic factor. All FLT3 and DNMT3A-R882 mutations have also an independent prognostic value. We support the rational for in-depth investigations for a better approach in patients who achieving a first complete remission.


Leukemia, Myeloid, Acute , Nuclear Proteins , Adult , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Nuclear Proteins/genetics , Nucleophosmin , Prognosis , fms-Like Tyrosine Kinase 3/genetics
11.
Blood ; 140(7): 756-768, 2022 08 18.
Article En | MEDLINE | ID: mdl-35443031

DDX41 germline mutations (DDX41MutGL) are the most common genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia (AML). Recent reports suggest that DDX41MutGL myeloid malignancies could be considered as a distinct entity, even if their specific presentation and outcome remain to be defined. We describe here the clinical and biological features of 191 patients with DDX41MutGL AML. Baseline characteristics and outcome of 86 of these patients, treated with intensive chemotherapy in 5 prospective Acute Leukemia French Association/French Innovative Leukemia Organization trials, were compared with those of 1604 patients with DDX41 wild-type (DDX41WT) AML, representing a prevalence of 5%. Patients with DDX41MutGL AML were mostly male (75%), in their seventh decade, and with low leukocyte count (median, 2 × 109/L), low bone marrow blast infiltration (median, 33%), normal cytogenetics (75%), and few additional somatic mutations (median, 2). A second somatic DDX41 mutation (DDX41MutSom) was found in 82% of patients, and clonal architecture inference suggested that it could be the main driver for AML progression. DDX41MutGL patients displayed higher complete remission rates (94% vs 69%; P < .0001) and longer restricted mean overall survival censored at hematopoietic stem cell transplantation (HSCT) than 2017 European LeukemiaNet intermediate/adverse (Int/Adv) DDX41WT patients (5-year difference in restricted mean survival times, 13.6 months; P < .001). Relapse rates censored at HSCT were lower at 1 year in DDX41MutGL patients (15% vs 44%) but later increased to be similar to Int/Adv DDX41WT patients at 3 years (82% vs 75%). HSCT in first complete remission was associated with prolonged relapse-free survival (hazard ratio, 0.43; 95% confidence interval, 0.21-0.88; P = .02) but not with longer overall survival (hazard ratio, 0.77; 95% confidence interval, 0.35-1.68; P = .5).


Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , DEAD-box RNA Helicases/genetics , Female , Germ-Line Mutation , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , Male , Prognosis , Prospective Studies , Retrospective Studies
12.
Commun Biol ; 5(1): 110, 2022 02 03.
Article En | MEDLINE | ID: mdl-35115654

Somatic mutation in TET2 gene is one of the most common clonal genetic events detected in age-related clonal hematopoiesis as well as in chronic myelomonocytic leukemia (CMML). In addition to being a pre-malignant state, TET2 mutated clones are associated with an increased risk of death from cardiovascular disease, which could involve cytokine/chemokine overproduction by monocytic cells. Here, we show in mice and in human cells that, in the absence of any inflammatory challenge, TET2 downregulation promotes the production of MIF (macrophage migration inhibitory factor), a pivotal mediator of atherosclerotic lesion formation. In healthy monocytes, TET2 is recruited to MIF promoter and interacts with the transcription factor EGR1 and histone deacetylases. Disruption of these interactions as a consequence of TET2-decreased expression favors EGR1-driven transcription of MIF gene and its secretion. MIF favors monocytic differentiation of myeloid progenitors. These results designate MIF as a chronically overproduced chemokine and a potential therapeutic target in patients with clonal TET2 downregulation in myeloid cells.


DNA-Binding Proteins/metabolism , Dioxygenases/metabolism , Early Growth Response Protein 1/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Monocytes/metabolism , Animals , Cell Line , Cytokines/genetics , Cytokines/metabolism , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Early Growth Response Protein 1/genetics , Gene Expression Regulation/physiology , Humans , Infant, Newborn , Macrophage Migration-Inhibitory Factors/genetics , Mice
13.
Cancer Gene Ther ; 29(8-9): 1263-1275, 2022 08.
Article En | MEDLINE | ID: mdl-35194200

DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.


Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Myelodysplastic Syndromes , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Genes, Homeobox/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Mesenchymal Stem Cells/metabolism , Myelodysplastic Syndromes/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Leukemia ; 36(1): 126-137, 2022 01.
Article En | MEDLINE | ID: mdl-34172895

The germline predisposition associated with the autosomal dominant inheritance of the 14q32 duplication implicating ATG2B/GSKIP genes is characterized by a wide clinical spectrum of myeloid neoplasms. We analyzed 12 asymptomatic carriers and 52 patients aged 18-74 years from six families, by targeted sequencing of 41 genes commonly mutated in myeloid malignancies. We found that 75% of healthy carriers displayed early clonal hematopoiesis mainly driven by TET2 mutations. Molecular landscapes of patients revealed two distinct routes of clonal expansion and leukemogenesis. The first route is characterized by the clonal dominance of myeloproliferative neoplasms (MPN)-driver events associated with TET2 mutations in half of cases and mutations affecting splicing and/or the RAS pathway in one-third of cases, leading to the early development of MPN, mostly essential thrombocythemia, with a high risk of transformation (50% after 10 years). The second route is distinguished by the absence of MPN-driver mutations and leads to AML without prior MPN. These patients mostly harbored a genomic landscape specific to acute myeloid leukemia secondary to myelodysplastic syndrome. An unexpected result was the total absence of DNMT3A mutations in this cohort. Our results suggest that the germline duplication constitutively mimics hematopoiesis aging by favoring TET2 clonal hematopoiesis.


Autophagy-Related Proteins/genetics , Chromosomes, Human, Pair 14/genetics , Clonal Hematopoiesis , Gene Duplication , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/pathology , Myeloproliferative Disorders/pathology , Repressor Proteins/genetics , Vesicular Transport Proteins/genetics , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Case-Control Studies , DNA Copy Number Variations , Disease Susceptibility , Female , Follow-Up Studies , Germ Cells , Humans , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics , Prognosis , Retrospective Studies , Survival Rate , Young Adult
15.
Leukemia ; 36(2): 540-548, 2022 02.
Article En | MEDLINE | ID: mdl-34556797

Myeloma is characterized by bone lesions, which are related to both an increased osteoclast activity and a defect in the differentiation of medullary mesenchymal stem cells (MSCs) into osteoblasts. Outside the medullary environment, adipocyte-derived MSCs (ASCs) could represent a source of functional osteoblasts. However, we recently found a defect in the osteoblastic differentiation of ASCs from myeloma patients (MM-ASCs). We examined the effects of plasma from myeloma patients at diagnosis (MM-plasmas) and in complete remission (CR-plasmas) and from healthy donors on the osteoblastic differentiation of healthy donor-derived ASCs (HD-ASCs). Osteoblastogenesis in HD-ASCs was suppressed by MM-plasmas. Seven cytokines (ANG1, ENA-78, EGF, PDGF-AA/AB/BB, and TARC) were increased in MM-plasmas and separately inhibited the osteoblastic differentiation of HD-ASCs. Comparison of MM-ASCs and HD-ASCs by RNA sequencing showed that two master genes characterizing adipocyte differentiation, CD36 and PPARγ, were upregulated in MM-ASCs as compared to HD-ASCs. Finally, we demonstrated a significant increase in CD36 and PPARγ expression in HD-ASCs in the presence of MM-plasmas or the seven cytokines individually, similarly as in MM-ASCs. We conclude that specific cytokines in MM-plasmas, besides the well-known DKK1, inhibit the osteoblastic differentiation of MM- and HD-ASCs with a skewing towards adipocyte differentiation.


Adipocytes/cytology , Cell Differentiation , Cytokines/pharmacology , Mesenchymal Stem Cells/cytology , Multiple Myeloma/metabolism , Osteoblasts/cytology , Stem Cells/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Case-Control Studies , Cells, Cultured , Healthy Volunteers , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Multiple Myeloma/pathology , Osteoblasts/drug effects , Osteoblasts/metabolism , Stem Cells/drug effects , Stem Cells/metabolism
16.
Nat Commun ; 12(1): 5044, 2021 08 19.
Article En | MEDLINE | ID: mdl-34413298

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Mutation , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/genetics , Ribosomes/pathology , Shwachman-Diamond Syndrome/genetics , Shwachman-Diamond Syndrome/pathology , Adolescent , Adult , Animals , Biological Phenomena , Cells, Cultured , Child , Child, Preschool , Dictyostelium , Drosophila , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Germ Cells , Humans , Infant , Molecular Dynamics Simulation , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Protein Binding , Protein Biosynthesis , Proteins/genetics , Proteins/metabolism , Ribonucleoprotein, U5 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae , Sequence Homology, Amino Acid , Shwachman-Diamond Syndrome/metabolism , Young Adult
17.
Br J Haematol ; 194(4): 745-749, 2021 08.
Article En | MEDLINE | ID: mdl-34312844

BRAF inhibitors are an effective treatment for BRAFV600E -mutated, risk-organ-positive Langerhans cell histiocytosis (RO+ LCH). However, cell-free BRAFV600E DNA often persists during therapy and recurrence frequently occurs after therapy discontinuation. To identify a pathological reservoir of BRAFV600E -mutated cells, we studied peripheral blood cells obtained from six infants with RO+ multisystem (MS) LCH that received targeted therapy. After cell sorting, the BRAFV600E mutation was detected in monocytes (n = 5), B lymphocytes (n = 3), T lymphocytes (n = 2), and myeloid and plasmacytoid dendritic cells (n = 2 each). This biomarker may offer an interesting tool for monitoring the effectiveness of new therapeutic approaches for weaning children with RO+ LCH from targeted therapy.


Histiocytosis, Langerhans-Cell/drug therapy , Point Mutation , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Child , Child, Preschool , Histiocytosis, Langerhans-Cell/blood , Histiocytosis, Langerhans-Cell/genetics , Humans , Infant , Point Mutation/drug effects , Proto-Oncogene Proteins B-raf/blood
19.
Pediatr Blood Cancer ; 68(7): e29071, 2021 07.
Article En | MEDLINE | ID: mdl-33871916

Shwachman-Diamond syndrome with Shwachman-Bodian-Diamond syndrome (SBDS) biallelic variants is a rare disorder that predisposes the carrier to malignant hemopathies but solid-cancer predisposition is poorly known. Among 155 cases entered in the French Registry for Severe Chronic Neutropenia, three were identified with malignant solid tumors (ovary, breast, and esophagus). All cancers occurred during the fifth decade and, despite being localized at diagnosis, were rapidly fatal thereafter. No cancer was observed post transplantation in the 14 HSCT survivors. Based on the literature and our patient data, we can merely advance that this complication is predominantly diagnosed in adults.


Neoplasms , Neutropenia , Shwachman-Diamond Syndrome , Female , Humans , Neoplasms/complications , Neoplasms/epidemiology , Neoplasms/genetics , Neutropenia/epidemiology , Neutropenia/etiology , Neutropenia/genetics , Registries , Shwachman-Diamond Syndrome/complications
...