Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Mol Ecol Resour ; 24(1): e13882, 2024 Jan.
Article En | MEDLINE | ID: mdl-37864541

Transition to novel environments, such as groundwater colonization by surface organisms, provides an excellent research ground to study phenotypic evolution. However, interspecific comparative studies on evolution to groundwater life are few because of the challenge in assembling large ecological and molecular resources for species-rich taxa comprised of surface and subterranean species. Here, we make available to the scientific community an operational set of working tools and resources for the Asellidae, a family of freshwater isopods containing hundreds of surface and subterranean species. First, we release the World Asellidae database (WAD) and its web application, a sustainable and FAIR solution to producing and sharing data and biological material. WAD provides access to thousands of species occurrences, specimens, DNA extracts and DNA sequences with rich metadata ensuring full scientific traceability. Second, we perform a large-scale dated phylogenetic reconstruction of Asellidae to support phylogenetic comparative analyses. Of 424 terminal branches, we identify 34 pairs of surface and subterranean species representing independent replicates of the transition from surface water to groundwater. Third, we exemplify the usefulness of WAD for documenting phenotypic shifts associated with colonization of subterranean habitats. We provide the first phylogenetically controlled evidence that body size of males decreases relative to that of females upon groundwater colonization, suggesting competition for rare receptive females selects for smaller, more agile males in groundwater. By making these tools and resources widely accessible, we open up new opportunities for exploring how phenotypic traits evolve in response to changes in selective pressures and trade-offs during groundwater colonization.


Isopoda , Animals , Phylogeny , Isopoda/genetics , Ecosystem , DNA , Base Sequence
3.
Biol Rev Camb Philos Soc ; 97(4): 1476-1510, 2022 08.
Article En | MEDLINE | ID: mdl-35315207

Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.


Biodiversity , Ecosystem , Caves , Conservation of Natural Resources/methods , Ecology , Fresh Water
5.
Zoology (Jena) ; 139: 125742, 2020 04.
Article En | MEDLINE | ID: mdl-32086140

Locomotion is an important, fitness-related functional trait. Environment selects for type of locomotion and shapes the morphology of locomotion-related traits such as body size and appendages. In subterranean aquatic arthropods, these traits are subjected to multiple, at times opposing selection pressures. Darkness selects for enhanced mechano- and chemosensory systems and hence elongation of appendages. Conversely, water currents have been shown to favor short appendages. However, no study has addressed the variation in locomotion of invertebrates inhabiting cave streams and cave lakes, or questioned the relationship between species' morphology and locomotion. To fill this knowledge gap, we studied the interplay between habitat use, morphology and locomotion in amphipods of the subterranean genus Niphargus. Previous studies showed that lake and stream species differ in morphology. Namely, lake species are large, stout and long-legged, whereas stream species are small, slender and short-legged. We here compared locomotion mode and speed between three lake and five stream species. In addition, we tested whether morphology predicts locomotion. We found that the stream species lie on their body sides and move using slow crawling or tail-flipping. The species inhabiting lakes move comparably faster, and use a variety of locomotion modes. Noteworthy, one of the lake species almost exclusively moves in an upright or semi-upright position that resembles walking. Body size and relative length of appendages predict locomotion mode and speed in all species. We propose that integrating locomotion in the studies of subterranean species might improve our understanding of their morphological evolution.


Amphipoda/physiology , Ecosystem , Locomotion , Animals , Behavior, Animal , Species Specificity
6.
Sci Rep ; 9(1): 15188, 2019 10 23.
Article En | MEDLINE | ID: mdl-31645598

Terrestrial life typically does not occur at depths greater than a few meters. Notable exceptions are massifs of fissured rock with caves and hollow spaces reaching depths of two kilometres and more. Recent biological discoveries from extremely deep caves have been reported as sensations analogous to wondrous deep sea creatures. However, the existence of unique deep terrestrial communities is questionable when caves are understood as integral parts of a bedrock fissure network (BFN) interconnecting all parts of a massif horizontally and vertically. We tested these two opposing hypotheses - unique deep cave fauna vs. BFN - by sampling subterranean communities within the 3D matrix of a typical karst massif. There was no distinction between deep core and shallow upper zone communities. Beta diversity patterns analysed against null models of random distribution were generally congruent with the BFN hypothesis, but suggested gravity-assisted concentration of fauna in deep caves and temperature-dependent horizontal distribution. We propose that the idea of a unique deep terrestrial fauna akin to deep oceanic life is unsupported by data and unwarranted by ecological considerations. Instead, the BFN hypothesis and local ecological and structural factors sufficiently explain the distribution of subterranean terrestrial life even in the deepest karst massifs.

7.
Sci Rep ; 7(1): 3391, 2017 06 13.
Article En | MEDLINE | ID: mdl-28611400

Molecular taxonomy often uncovers cryptic species, reminding us that taxonomic incompleteness is even more severe than previous thought. The importance of cryptic species for conservation is poorly understood. Although some cryptic species may be seriously threatened or otherwise important, they are rarely included in conservation programs as most of them remain undescribed. We analysed the importance of cryptic species in conservation by scrutinizing the South European cryptic complex of the subterranean amphipod Niphargus stygius sensu lato. Using uni- and multilocus delineation methods we show that it consists of 15 parapatric and sympatric species, which we describe using molecular diagnoses. The new species are not mere "taxonomic inflation" as they originate from several distinct branches within the genus and coexist with no evidence of lineage sharing. They are as evolutionarily distinct as average nominal species of the same genus. Ignoring these cryptic species will underestimate the number of subterranean endemics in Slovenia by 12 and in Croatia by four species, although alpha diversity of single caves remains unchanged. The new taxonomy renders national Red Lists largely obsolete, as they list mostly large-ranged species but omit critically endangered single-site endemics. Formal naming of cryptic species is critical for them to be included in conservation policies and faunal listings.


Amphipoda/classification , Biological Evolution , Conservation of Natural Resources , Ecosystem , Phylogeny , Terminology as Topic , Amphipoda/genetics , Animals , Sequence Analysis, DNA , Species Specificity
8.
Zootaxa ; 4027(1): 117-29, 2015 Oct 01.
Article En | MEDLINE | ID: mdl-26624169

We describe and phylogenetically characterize a new species Niphargus mirocensis from Mt. Miroc, eastern Serbia. This species shows distinct morphology typical for a lake ecomorph of niphargid amphipod, i.e. large and stout body, elongated appendages and raptorial gnathopods and presents the first record of this ecomorph in Carpathian Mountains. Phylogenetic analyses based on Cytochrome Oxidase Subunit 1 gene (COI), Histone (H3) and 28S rRNA (28S) suggests that species is nested within a clade of lake ecomorphs spread in Italy and Central Dinaric Region. The new finding is geographic extension of clade's range, the species of which are generally narrow endemics.


Amphipoda/classification , Amphipoda/anatomy & histology , Amphipoda/genetics , Amphipoda/growth & development , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Ecosystem , Electron Transport Complex IV/genetics , Female , Organ Size , Phylogeny
9.
Zootaxa ; 3994(3): 354-76, 2015 Aug 03.
Article En | MEDLINE | ID: mdl-26250278

We describe a new species of an amphipod Niphargus zagorae sp. n. and redescribe its nearest relative and morphologically similar species N. boskovici S. Karaman, 1952. We present the geographic distributions of both species, morphological diagnoses and infer their phylogenetic position within the genus based on COI, 28S and H3 markers.


Amphipoda/classification , Amphipoda/anatomy & histology , Amphipoda/genetics , Amphipoda/growth & development , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Female , Male , Organ Size , Phylogeny
...