Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(11): 220, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819415

RESUMEN

KEY MESSAGE: We demonstrate potential for improved multi-environment genomic prediction accuracy using structural variant markers. However, the degree of observed improvement is highly dependent on the genetic architecture of the trait. Breeders commonly use genetic markers to predict the performance of untested individuals as a way to improve the efficiency of breeding programs. These genomic prediction models have almost exclusively used single nucleotide polymorphisms (SNPs) as their source of genetic information, even though other types of markers exist, such as structural variants (SVs). Given that SVs are associated with environmental adaptation and not all of them are in linkage disequilibrium to SNPs, SVs have the potential to bring additional information to multi-environment prediction models that are not captured by SNPs alone. Here, we evaluated different marker types (SNPs and/or SVs) on prediction accuracy across a range of genetic architectures for simulated traits across multiple environments. Our results show that SVs can improve prediction accuracy, but it is highly dependent on the genetic architecture of the trait and the relative gain in accuracy is minimal. When SVs are the only causative variant type, 70% of the time SV predictors outperform SNP predictors. However, the improvement in accuracy in these instances is only 1.5% on average. Further simulations with predictors in varying degrees of LD with causative variants of different types (e.g., SNPs, SVs, SNPs and SVs) showed that prediction accuracy increased as linkage disequilibrium between causative variants and predictors increased regardless of the marker type. This study demonstrates that knowing the genetic architecture of a trait in deciding what markers to use in large-scale genomic prediction modeling in a breeding program is more important than what types of markers to use.


Asunto(s)
Genoma , Modelos Genéticos , Humanos , Simulación por Computador , Genómica/métodos , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Genotipo
2.
Genetics ; 224(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37246567

RESUMEN

Understanding how plants adapt to specific environmental changes and identifying genetic markers associated with phenotypic plasticity can help breeders develop plant varieties adapted to a rapidly changing climate. Here, we propose the use of marker effect networks as a novel method to identify markers associated with environmental adaptability. These marker effect networks are built by adapting commonly used software for building gene coexpression networks with marker effects across growth environments as the input data into the networks. To demonstrate the utility of these networks, we built networks from the marker effects of ∼2,000 nonredundant markers from 400 maize hybrids across 9 environments. We demonstrate that networks can be generated using this approach, and that the markers that are covarying are rarely in linkage disequilibrium, thus representing higher biological relevance. Multiple covarying marker modules associated with different weather factors throughout the growing season were identified within the marker effect networks. Finally, a factorial test of analysis parameters demonstrated that marker effect networks are relatively robust to these options, with high overlap in modules associated with the same weather factors across analysis parameters. This novel application of network analysis provides unique insights into phenotypic plasticity and specific environmental factors that modulate the genome.


Asunto(s)
Genotipo , Fenotipo , Marcadores Genéticos , Desequilibrio de Ligamiento
3.
G3 (Bethesda) ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34568911

RESUMEN

Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs comprise the majority of the maize genome and affect important phenotypes, genome-wide patterns of TE polymorphisms in maize have only been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a method to use short-read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 nonredundant TEs that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e., LTRs, Helitrons, and TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent in the population than LTRs with higher LTR similarity, though high-frequency insertions with very high LTR similarity were observed. LTR similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events occurred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R2 < 0.5) that potentially represent information that has not been well captured in previous SNP-based marker-trait association studies. This study provides a population scale genome-wide assessment of TE variation in maize and provides valuable insight on variation in TEs in maize and factors that contribute to this variation.


Asunto(s)
Elementos Transponibles de ADN , Zea mays , Elementos Transponibles de ADN/genética , Genotipo , Intrones , Secuencias Repetidas Terminales , Zea mays/genética
4.
Science ; 373(6555): 655-662, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34353948

RESUMEN

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.


Asunto(s)
Genoma de Planta , Anotación de Secuencia Molecular , Zea mays/genética , Centrómero/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Metilación de ADN , Resistencia a la Enfermedad/genética , Genes de Plantas , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Herencia Multifactorial/genética , Fenotipo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ADN , Tetraploidía , Transcriptoma , Secuenciación Completa del Genoma
5.
Mol Plant Microbe Interact ; 34(11): 1298-1306, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34340534

RESUMEN

Plants resist infection by pathogens using both preexisting barriers and inducible defense responses. Inducible responses are governed in a complex manner by various hormone signaling pathways. The relative contribution of hormone signaling pathways to nonhost resistance to pathogens is not well understood. In this study, we examined the molecular basis of disrupted nonhost resistance to the fungal species Puccinia graminis, which causes stem rust of wheat, in an induced mutant of the model grass Brachypodium distachyon. Through bioinformatic analysis, a 1-bp deletion in the mutant genotype was identified that introduces a premature stop codon in the gene Bradi1g24100, which is a homolog of the Arabidopsis thaliana gene TIME FOR COFFEE (TIC). In Arabidopsis, TIC is central to the regulation of the circadian clock and plays a crucial role in jasmonate signaling by attenuating levels of the transcription factor protein MYC2, and its mutational disruption results in enhanced susceptibility to the hemibiotroph Pseudomonas syringae. Our similar finding for an obligate biotroph suggests that the biochemical role of TIC in mediating disease resistance to biotrophs is conserved in grasses, and that the correct modulation of jasmonate signaling during infection by Puccinia graminis may be essential for nonhost resistance to wheat stem rust in B. distachyon.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Arabidopsis , Basidiomycota , Brachypodium , Arabidopsis/genética , Brachypodium/genética , Café , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética
6.
Genes (Basel) ; 12(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34440428

RESUMEN

Once considered nonfunctional, pseudogene transcripts are now known to provide valuable information for cancer susceptibility, including head and neck cancer (HNC), a serious health problem worldwide, with about 50% unimproved overall survival over the last decades. The present review focuses on the role of pseudogene transcripts involved in HNC risk and prognosis. We combined current literature and in silico analyses from The Cancer Genome Atlas (TCGA) database to identify the most deregulated pseudogene transcripts in HNC and their genetic variations. We then built a co-expression network and performed gene ontology enrichment analysis to better understand the pseudogenes' interactions and pathways in HNC. In the literature, few pseudogenes have been studied in HNC. Our in silico analysis identified 370 pseudogene transcripts associated with HNC, where SPATA31D5P, HERC2P3, SPATA31C2, MAGEB6P1, SLC25A51P1, BAGE2, DNM1P47, SPATA31C1, ZNF733P and OR2W5 were found to be the most deregulated and presented several genetic alterations. NBPF25P, HSP90AB2P, ZNF658B and DPY19L2P3 pseudogenes were predicted to interact with 12 genes known to participate in HNC, DNM1P47 was predicted to interact with the TP53 gene, and HLA-H pseudogene was predicted to interact with HLA-A and HLA-B genes. The identified pseudogenes were associated with cancer biology pathways involving cell communication, response to stress, cell death, regulation of the immune system, regulation of gene expression, and Wnt signaling. Finally, we assessed the prognostic values of the pseudogenes with the Kaplan-Meier Plotter database, and found that expression of SPATA31D5P, SPATA31C2, BAGE2, SPATA31C1, ZNF733P and OR2W5 pseudogenes were associated with patients' survival. Due to pseudogene transcripts' potential for cancer diagnosis, progression, and as therapeutic targets, our study can guide new research to HNC understanding and development of new target therapies.


Asunto(s)
Biomarcadores de Tumor/genética , Biología Computacional , Neoplasias de Cabeza y Cuello/genética , Proteínas de Neoplasias/genética , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias de Cabeza y Cuello/epidemiología , Neoplasias de Cabeza y Cuello/patología , Humanos , Estimación de Kaplan-Meier , Pronóstico
7.
Front Plant Sci ; 12: 657796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968112

RESUMEN

Wheat stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt) is a global threat to wheat production. Fast evolving populations of Pgt limit the efficacy of plant genetic resistance and constrain disease management strategies. Understanding molecular mechanisms that lead to rust infection and disease susceptibility could deliver novel strategies to deploy crop resistance through genetic loss of disease susceptibility. We used comparative transcriptome-based and orthology-guided approaches to characterize gene expression changes associated with Pgt infection in susceptible and resistant Triticum aestivum genotypes as well as the non-host Brachypodium distachyon. We targeted our analysis to genes with differential expression in T. aestivum and genes suppressed or not affected in B. distachyon and report several processes potentially linked to susceptibility to Pgt, such as cell death suppression and impairment of photosynthesis. We complemented our approach with a gene co-expression network analysis to identify wheat targets to deliver resistance to Pgt through removal or modification of putative susceptibility genes.

8.
Genome Biol ; 22(1): 3, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397434

RESUMEN

Crop genomics has seen dramatic advances in recent years due to improvements in sequencing technology, assembly methods, and computational resources. These advances have led to the development of new tools to facilitate crop improvement. The study of structural variation within species and the characterization of the pan-genome has revealed extensive genome content variation among individuals within a species that is paradigm shifting to crop genomics and improvement. Here, we review advances in crop genomics and how utilization of these tools is shifting in light of pan-genomes that are becoming available for many crop species.


Asunto(s)
Productos Agrícolas/genética , Genoma de Planta , Genómica/métodos , Biología Computacional , Elementos Transponibles de ADN , Variación Genética
9.
Plant J ; 105(1): 93-107, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098691

RESUMEN

Single-parent expression (SPE) is defined as gene expression in only one of the two parents. SPE can arise from differential expression between parental alleles, termed non-presence/absence (non-PAV) SPE, or from the physical absence of a gene in one parent, termed PAV SPE. We used transcriptome data of diverse Zea mays (maize) inbreds and hybrids, including 401 samples from five different tissues, to test for differences between these types of SPE genes. Although commonly observed, SPE is highly genotype and tissue specific. A positive correlation was observed between the genetic distance of the two inbred parents and the number of SPE genes identified. Regulatory analysis showed that PAV SPE and non-PAV SPE genes are mainly regulated by cis effects, with a small fraction under trans regulation. Polymorphic transposable element insertions in promoter sequences contributed to the high level of cis regulation for PAV SPE and non-PAV SPE genes. PAV SPE genes were more frequently expressed in hybrids than non-PAV SPE genes. The expression of parentally silent alleles in hybrids of non-PAV SPE genes was relatively rare but occurred in most hybrids. Non-PAV SPE genes with expression of the silent allele in hybrids are more likely to exhibit above high parent expression level than hybrids that do not express the silent allele, leading to non-additive expression. This study provides a comprehensive understanding of the nature of non-PAV SPE and PAV SPE genes and their roles in gene expression complementation in maize hybrids.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Zea mays/genética , Alelos , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Hibridación Genética , Filogenia , Regiones Promotoras Genéticas/genética , Zea mays/metabolismo
10.
Mol Plant Microbe Interact ; 32(4): 392-400, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30261155

RESUMEN

The emergence of new races of Puccinia graminis f. sp. tritici, the causal pathogen of wheat stem rust, has spurred interest in developing durable resistance to this disease in wheat. Nonhost resistance holds promise to help control this and other diseases because it is durable against nonadapted pathogens. However, the genetic and molecular basis of nonhost resistance to wheat stem rust is poorly understood. In this study, the model grass Brachypodium distachyon, a nonhost of P. graminis f. sp. tritici, was used to genetically dissect nonhost resistance to wheat stem rust. A recombinant inbred line (RIL) population segregating for response to wheat stem rust was evaluated for resistance. Evaluation of genome-wide cumulative single nucleotide polymorphism allele frequency differences between contrasting pools of resistant and susceptible RILs followed by molecular marker analysis identified six quantitative trait loci (QTL) that cumulatively explained 72.5% of the variation in stem rust resistance. Two of the QTLs explained 31.7% of the variation, and their interaction explained another 4.6%. Thus, nonhost resistance to wheat stem rust in B. distachyon is genetically complex, with both major and minor QTLs acting additively and, in some cases, interacting. These findings will guide future research to identify genes essential to nonhost resistance to wheat stem rust.


Asunto(s)
Basidiomycota , Brachypodium , Resistencia a la Enfermedad , Genoma de Planta , Basidiomycota/fisiología , Brachypodium/microbiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Humanos , Enfermedades de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...