Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540945

RESUMEN

Lactococcus lactis is a lactic acid bacterium (LAB), generally recognized as safe, and has been widely used in the food industry, especially in fermented dairy products. Numerous studies have evaluated the technological and probiotic properties of lactococci; however, few studies have reported the probiotic characteristics of L. lactis strains isolated from dairy products. In this work, probiotic potential, including survival in simulated gastric juice, tolerance to bile salts, hydrophobicity, and auto- and co-aggregation, was evaluated in L. lactis strains from natural whey starter cultures. The results highlighted the potential probiotic properties of some strains under study, which showed high values of hydrophobicity and auto-aggregation and low values of co-aggregation with the tested pathogenic strains. In addition, studies of safety parameters, such as antibiotic susceptibility and haemolytic activity, confirmed the safety status of all strains under study. Finally, the four most promising strains were investigated for their ability to inhibit the enteroinvasive Escherichia coli (EIEC) and Salmonella Typhimurium adhesion to epithelial cells, using a model of co-cultured epithelial cells. The results demonstrated that L. lactis strains A3-A5-I4-I7 showed the ability to compete with pathogens as well as the ability to exert a protective effect on cells previously infected with E. coli or S. Typhimurium. The identification of new probiotic LAB strains from dairy products aims to produce novel functional foods.

2.
Sci Rep ; 13(1): 20332, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989843

RESUMEN

Drug resistance is one of the most difficult challenges facing tuberculosis (TB) control. Drug efflux is among the mechanisms leading to drug resistance. In our previous studies, we partially characterized the ABC-type MSMEG-3762/63 efflux pump in Mycobacterium smegmatis, which shares high percentage of identity with the Mycobacterium tuberculosis Rv1687/86c pump. MSMEG-3762/63 was shown to have extrusion activity for rifampicin and ciprofloxacin, used in first and second-line anti-TB treatments. Moreover, we described the functional role of the TetR-like MSMEG-3765 protein as a repressor of the MSMEG_3762/63/65 operon and orthologous Rv1687/86/85c in M. tuberculosis. Here we show that the operon is upregulated in the macrophage environment, supporting a previous observation of induction triggered by acid-nitrosative stress. Expression of the efflux pump was also induced by sub-inhibitory concentrations of rifampicin or ciprofloxacin. Both these drugs also prevented the binding of the MSMEG-3765 TetR repressor protein to its operator in the MSMEG_3762/63/65 operon. The hypothesis that these two drugs might be responsible for the induction of the efflux pump operon was assessed by bioinformatics analyses. Docking studies using a structural model of the regulator MSMEG-3765 showed that both antibiotics abolished the ability of this transcriptional repressor to recognize the efflux pump operon by interacting with the homodimer at different binding sites within the same binding pocket. Reduced binding of the repressor leads to induction of the efflux pump in M. smegmatis, and reduced efficacy of these two anti-mycobacterial drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Rifampin/farmacología , Rifampin/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , Ciprofloxacina/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...