Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
2.
Nat Med ; 29(10): 2643-2655, 2023 10.
Article En | MEDLINE | ID: mdl-37749332

Fatty liver disease (FLD) caused by metabolic dysfunction is the leading cause of liver disease and the prevalence is rising, especially in women. Although during reproductive age women are protected against FLD, for still unknown and understudied reasons some develop rapidly progressive disease at the menopause. The patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M variant accounts for the largest fraction of inherited FLD variability. In the present study, we show that there is a specific multiplicative interaction between female sex and PNPLA3 p.I148M in determining FLD in at-risk individuals (steatosis and fibrosis, P < 10-10; advanced fibrosis/hepatocellular carcinoma, P = 0.034) and in the general population (P < 10-7 for alanine transaminase levels). In individuals with obesity, hepatic PNPLA3 expression was higher in women than in men (P = 0.007) and in mice correlated with estrogen levels. In human hepatocytes and liver organoids, PNPLA3 was induced by estrogen receptor-α (ER-α) agonists. By chromatin immunoprecipitation and luciferase assays, we identified and characterized an ER-α-binding site within a PNPLA3 enhancer and demonstrated via CRISPR-Cas9 genome editing that this sequence drives PNPLA3 p.I148M upregulation, leading to lipid droplet accumulation and fibrogenesis in three-dimensional multilineage spheroids with stellate cells. These data suggest that a functional interaction between ER-α and PNPLA3 p.I148M variant contributes to FLD in women.


Acyltransferases , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Receptors, Estrogen , Animals , Female , Humans , Male , Mice , Acyltransferases/genetics , Acyltransferases/metabolism , Carcinoma, Hepatocellular , Fibrosis , Genetic Predisposition to Disease , Liver/metabolism , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2, Calcium-Independent/metabolism , Receptors, Estrogen/metabolism
3.
Nutrients ; 15(10)2023 May 16.
Article En | MEDLINE | ID: mdl-37242221

Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.


Environmental Pollutants , Non-alcoholic Fatty Liver Disease , Female , Humans , Male , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/chemically induced , Environmental Pollutants/toxicity , Diet , Environmental Pollution/adverse effects
4.
Nutrients ; 15(7)2023 Mar 29.
Article En | MEDLINE | ID: mdl-37049511

The prevalence of obesity and other metabolic disorders is increasing worldwide [...].


Diet , Obesity , Humans , Obesity/epidemiology , Obesity/metabolism , Fertility
5.
Nutrients ; 14(16)2022 Aug 10.
Article En | MEDLINE | ID: mdl-36014766

Non-alcoholic fatty liver disease (NAFLD) represents a public health issue, due to its prevalence and association with other cardiometabolic diseases. Growing evidence suggests that NAFLD alters the production of hepatokines, which, in turn, influence several metabolic processes. Despite accumulating evidence on the major role of estrogen signaling in the sexually dimorphic nature of NAFLD, dependency of hepatokine expression on sex and estrogens has been poorly investigated. Through in vitro and in vivo analysis, we determined the extent to which hepatokines, known to be altered in NAFLD, can be regulated, in a sex-specific fashion, under different hormonal and nutritional conditions. Our study identified four hepatokines that better recapitulate sex and estrogen dependency. Among them, adropin resulted as one that displays a sex-specific and estrogen receptor alpha (ERα)-dependent regulation in the liver of mice under an excess of dietary lipids (high-fat diet, HFD). Under HFD conditions, the hepatic induction of adropin negatively correlates with the expression of lipogenic genes and with fatty liver in female mice, an effect that depends upon hepatic ERα. Our findings support the idea that ERα-mediated induction of adropin might represent a potential approach to limit or prevent NAFLD.


Diet, High-Fat , Estrogen Receptor alpha , Intercellular Signaling Peptides and Proteins , Liver , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/genetics , Estrogens/metabolism , Female , Homeostasis/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism
6.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article En | MEDLINE | ID: mdl-35683029

We previously demonstrated that Npy1rrfb mice, which carry the conditional inactivation of the Npy1r gene in forebrain principal neurons, display a sexually dimorphic phenotype, with male mice showing metabolic, hormonal and behavioral effects and females being only marginally affected. Moreover, exposure of Npy1rrfb male mice to a high-fat diet (HFD) increased body weight growth, adipose tissue, blood glucose levels and caloric intake compared to Npy1r2lox male controls. We used conditional knockout Npy1rrfb and Npy1r2lox control mice to examine whether forebrain disruption of the Npy1r gene affects susceptibility to obesity and associated disorders of cycling and ovariectomized (ovx) female mice in a standard diet (SD) regimen or exposed to an HFD for 3 months. The conditional deletion of the Npy1r gene increased body weight and subcutaneous white adipose tissue weight in both SD- and HFD-fed ovx females but not in cycling females. Moreover, compared with ovx control females on the same diet regimen, Npy1rrfb females displayed increased microglia number and activation, increased expression of Neuropeptide Y (NPY)-immunoreactivity (IR) and decreased expression of proopiomelanocortin-IR in the hypothalamic arcuate nucleus (ARC). These results suggest that in the ARC NPY-Y1R reduces the susceptibility to obesity of female mice with low levels of gonadal hormones and that this effect may be mediated via NPY-Y1R ability to protect the brain against neuroinflammation.


Neuropeptide Y , Receptors, Neuropeptide Y , Animals , Female , Gonadal Hormones , Male , Mice , Neuroinflammatory Diseases , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Obesity/genetics , Obesity/metabolism , Prosencephalon/metabolism , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism
7.
Front Pharmacol ; 13: 879020, 2022.
Article En | MEDLINE | ID: mdl-35431927

Beyond the wide use of tamoxifen in breast cancer chemotherapy due to its estrogen receptor antagonist activity, this drug is being assayed in repurposing strategies against a number of microbial infections. We conducted a literature search on the evidence related with tamoxifen activity in macrophages, since these immune cells participate as a first line-defense against pathogen invasion. Consistent data indicate the existence of estrogen receptor-independent targets of tamoxifen in macrophages that include lipid mediators and signaling pathways, such as NRF2 and caspase-1, which allow these cells to undergo phenotypic adaptation and potentiate the inflammatory response, without the induction of cell death. Thus, these lines of evidence suggest that the widespread antimicrobial activity of this drug can be ascribed, at least in part, to the potentiation of the host innate immunity. This widens our understanding of the pharmacological activity of tamoxifen with relevant therapeutic implications for infections and other clinical indications that may benefit from the immunomodulatory effects of this drug.

8.
Methods Mol Biol ; 2418: 153-172, 2022.
Article En | MEDLINE | ID: mdl-35119665

In spite of the fact that women spend 1/3 of their lives in postmenopause, the search for appropriate therapies able to counteract the derangements associated with the menopause still represents a sort of sought after the "Holy Grail."Nowadays, the combination of estrogens and selective estrogen receptor modulators (SERMs), a class of compounds with a mixed agonist/antagonistic activity on the estrogen receptor (ER) in various tissues, represents the most promising approach to improve postmenopausal women's health, by preserving the benefits while avoiding the side effects of estrogen-based therapy.Given their complex mechanisms of action, the evaluation of SERM activity in combination with conjugated estrogens (CE) requires a multifactorial analysis that takes into account the multifaceted and dynamic effects of these compounds in target tissues, even in relation to the physiological/pathological status.To accomplish such a goal, we took advantage of the ERE-Luc model, a reporter mouse that allows the monitoring of ER transcriptional activity in a spatio-temporal dimension. Cluster analyses performed on in vivo/ex vivo bioluminescence (BLI) data and ex vivo luciferase activity enabled to sustain the combination of CE plus bazedoxifene (TSEC, tissue-selective estrogen complex) as a valuable option for the pharmacological treatment of the postmenopause.


Estrogens, Conjugated (USP) , Receptors, Estrogen , Animals , Estrogens/pharmacology , Estrogens, Conjugated (USP)/adverse effects , Female , Humans , Menopause , Mice , Receptors, Estrogen/genetics , Selective Estrogen Receptor Modulators/pharmacology , Selective Estrogen Receptor Modulators/therapeutic use
9.
Nat Commun ; 12(1): 6883, 2021 11 25.
Article En | MEDLINE | ID: mdl-34824281

In female mammals, the cessation of ovarian functions is associated with significant metabolic alterations, weight gain, and increased susceptibility to a number of pathologies associated with ageing. The molecular mechanisms triggering these systemic events are unknown because most tissues are responsive to lowered circulating sex steroids. As it has been demonstrated that isoform alpha of the estrogen receptor (ERα) may be activated by both estrogens and amino acids, we test the metabolic effects of a diet enriched in specific amino acids in ovariectomized (OVX) mice. This diet is able to block the OVX-induced weight gain and fat deposition in the liver. The use of liver-specific ERα KO mice demonstrates that the hepatic ERα, through the control of liver lipid metabolism, has a key role in the systemic response to OVX. The study suggests that the liver ERα might be a valuable target for dietary treatments for the post-menopause.


Amino Acids, Essential/pharmacology , Estrogen Receptor alpha/metabolism , Liver/drug effects , Ovariectomy/adverse effects , Amino Acids, Branched-Chain/pharmacology , Amino Acids, Branched-Chain/therapeutic use , Amino Acids, Essential/therapeutic use , Animals , Diet Therapy , Estrogen Receptor alpha/deficiency , Female , Lipid Metabolism/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Sex Characteristics , Transcriptome/drug effects , Weight Gain/drug effects
10.
Cells ; 10(9)2021 09 21.
Article En | MEDLINE | ID: mdl-34572151

Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.


Gonadal Steroid Hormones/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/physiopathology , Female , Gonadal Steroid Hormones/physiology , Humans , Inflammation/metabolism , Liver/pathology , Male , Obesity/metabolism , Sex Characteristics , Sex Factors , Signal Transduction
11.
Front Endocrinol (Lausanne) ; 11: 572490, 2020.
Article En | MEDLINE | ID: mdl-33071979

There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.


Estrogens/physiology , Inflammation/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Animals , Diet , Female , Humans , Liver Regeneration , Male , Obesity/complications , Prevalence , Receptors, Estrogen/physiology , Sex Characteristics , Signal Transduction/physiology
12.
Mol Metab ; 32: 97-108, 2020 02.
Article En | MEDLINE | ID: mdl-32029233

OBJECTIVE: Among obesity-associated metabolic diseases, non-alcoholic fatty liver disease (NAFLD) represents an increasing public health issue due to its emerging association with atherogenic dyslipidemia and cardiovascular diseases (CVDs). The lower prevalence of NAFLD in pre-menopausal women compared with men or post-menopausal women led us to hypothesize that the female-inherent ability to counteract this pathology might strongly rely on estrogen signaling. In female mammals, estrogen receptor alpha (ERα) is highly expressed in the liver, where it acts as a sensor of the nutritional status and adapts the metabolism to the reproductive needs. As in the male liver this receptor is little expressed, we here hypothesize that hepatic ERα might account for sex differences in the ability of males and females to cope with an excess of dietary lipids and counteract the accumulation of lipids in the liver. METHODS: Through liver metabolomics and transcriptomics we analyzed the relevance of hepatic ERα in the metabolic response of males and females to a diet highly enriched in fats (HFD) as a model of diet-induced obesity. RESULTS: The study shows that the hepatic ERα strongly contributes to the sex-specific response to an HFD and its action accounts for opposite consequences for hepatic health in males and females. CONCLUSION: This study identified hepatic ERα as a novel target for the design of sex-specific therapies against fatty liver and its cardio-metabolic consequences.


Diet, High-Fat , Estrogen Receptor alpha/metabolism , Lipids/administration & dosage , Liver/metabolism , Sex Characteristics , Animals , Estrogen Receptor alpha/deficiency , Female , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism
13.
Endocr Rev ; 41(2)2020 04 01.
Article En | MEDLINE | ID: mdl-31544208

Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.


Gonadal Steroid Hormones/metabolism , Neurodegenerative Diseases/metabolism , Receptors, Steroid/metabolism , Sex Characteristics , Female , Humans , Male , Neurodegenerative Diseases/drug therapy
14.
Front Neuroendocrinol ; 52: 156-164, 2019 01.
Article En | MEDLINE | ID: mdl-30481522

Sex plays a role in the incidence and outcome of neurological illnesses, also influencing the response to treatments. Despite sexual differentiation of the brain has been extensively investigated, the study of sex differences in microglia, the brain's resident immune cells, has been largely neglected until recently. To fulfill this gap, our laboratory developed several tools, including cellular and animal models, which bolstered in-depth studies on sexual differentiation of microglia and its impact on brain physiology, as well as on the onset and progression of neurological disorders. Here, we summarize the current status of knowledge on the sex-dependent function of microglia, and report recent evidence linking these cells to the sexual bias in the susceptibility to neurological brain diseases.


Brain Diseases , Brain/growth & development , Microglia/physiology , Sex Characteristics , Sex Differentiation/physiology , Animals , Brain/metabolism , Brain/physiopathology , Brain Diseases/epidemiology , Brain Diseases/metabolism , Brain Diseases/physiopathology , Humans
15.
Hum Reprod Update ; 24(6): 652-672, 2018 11 01.
Article En | MEDLINE | ID: mdl-30256960

BACKGROUND: Estrogens are known to orchestrate reproductive events and to regulate the immune system during infections and following tissue damage. Recent findings suggest that, in the absence of any danger signal, estrogens trigger the physiological expansion and functional specialization of macrophages, which are immune cells that populate the female reproductive tract (FRT) and are increasingly being recognized to participate in tissue homeostasis beyond their immune activity against infections. Although estrogens are the only female gonadal hormones that directly target macrophages, a comprehensive view of this endocrine-immune communication and its involvement in the FRT is still missing. OBJECTIVE AND RATIONALE: Recent accomplishments encourage a revision of the literature on the ability of macrophages to respond to estrogens and induce tissue-specific functions required for reproductive events, with the aim to envision macrophages as key players in FRT homeostasis and mediators of the regenerative and trophic actions of estrogens. SEARCH METHODS: We conducted a systematic search using PubMed and Ovid for human, animal (rodents) and cellular studies published until 2018 on estrogen action in macrophages and the activity of these cells in the FRT. OUTCOMES: Our search identified the remarkable ability of macrophages to activate biochemical processes in response to estrogens in cell culture experiments. The distribution at specific locations, interaction with selected cells and acquisition of distinct phenotypes of macrophages in the FRT, as well as the cyclic renewal of these properties at each ovarian cycle, demonstrate the involvement of these cells in the homeostasis of reproductive events. Moreover, current evidence suggests an association between estrogen-macrophage signaling and the generation of a tolerant and regenerative environment in the FRT, although a causative link is still missing. WIDER IMPLICATIONS: Dysregulation of the functions and estrogen responsiveness of FRT macrophages may be involved in infertility and estrogen- and macrophage-dependent gynecological diseases, such as ovarian cancer and endometriosis. Thus, more research is needed on the physiology and pharmacological control of this endocrine-immune interplay.


Estrogens/physiology , Macrophages/physiology , Reproduction/physiology , Animals , Endometriosis/metabolism , Endometriosis/pathology , Female , Genitalia, Female/cytology , Genitalia, Female/metabolism , Homeostasis/physiology , Humans , Infertility/metabolism , Infertility/pathology , Menstrual Cycle/physiology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Signal Transduction/physiology
16.
J Endocrinol ; 238(3): 165-176, 2018 09.
Article En | MEDLINE | ID: mdl-30012715

Oestrogens are well-known proliferation and differentiation factors that play an essential role in the correct development of sex-related organs and behaviour in mammals. With the use of the ERE-Luc reporter mouse model, we show herein that throughout mouse development, oestrogen receptors (ERs) are active starting from day 12 post conception. Most interestingly, we show that prenatal luciferase expression in each organ is proportionally different in relation to the germ layer of the origin. The luciferase content is highest in ectoderm-derived organs (such as brain and skin) and is lowest in endoderm-derived organs (such as liver, lung, thymus and intestine). Consistent with the testosterone surge occurring in male mice at the end of pregnancy, in the first 2 days after birth, we observed a significant increase in the luciferase content in several organs, including the liver, bone, gonads and hindbrain. The results of the present study show a widespread transcriptional activity of ERs in developing embryos, pointing to the potential contribution of these receptors in the development of non-reproductive as well as reproductive organs. Consequently, the findings reported here might be relevant in explaining the significant differences in male and female physiopathology reported by a growing number of studies and may underline the necessity for more systematic analyses aimed at the identification of the prenatal effects of drugs interfering with ER signalling, such as aromatase inhibitors or endocrine disrupter chemicals.


Embryonic Development/genetics , Gene Expression Regulation, Developmental , Receptors, Estrogen/physiology , Animals , Embryo, Mammalian , Embryonic Development/drug effects , Estrogens/pharmacology , Female , Fulvestrant/pharmacology , Gene Expression Regulation, Developmental/drug effects , Genes, Reporter/drug effects , Luciferases/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Response Elements/drug effects , Response Elements/genetics , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
17.
Cell Metab ; 28(2): 256-267.e5, 2018 08 07.
Article En | MEDLINE | ID: mdl-29909969

Sex impacts on liver physiology with severe consequences for energy metabolism and response to xenobiotic, hepatic, and extra-hepatic diseases. The comprehension of the biology subtending sex-related hepatic differences is therefore very relevant in the medical, pharmacological, and dietary perspective. The extensive application of metabolomics paired to transcriptomics here shows that, in the case of short-term fasting, the decision to maintain lipid synthesis using amino acids (aa) as a source of fuel is the key discriminant for the hepatic metabolism of male and female mice. Pharmacological and genetic interventions indicate that the hepatic estrogen receptor (ERα) has a key role in this sex-related strategy that is primed around birth by the aromatase-dependent conversion of testosterone into estradiol. This energy partition strategy, possibly the result of an evolutionary pressure enabling mammals to tailor their reproductive capacities to nutritional status, is most important to direct future sex-specific dietary and medical interventions.


Amino Acids/metabolism , Estrogen Receptor alpha/physiology , Fasting/metabolism , Lipogenesis/physiology , Liver/metabolism , Sex Characteristics , Animals , Aromatase/metabolism , Energy Metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Female , Male , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Sex Factors
18.
Mol Metab ; 15: 3-7, 2018 09.
Article En | MEDLINE | ID: mdl-29550349

BACKGROUND: Epidemiological and clinical studies have largely demonstrated major differences in the prevalence of metabolic disorders in males and females, but the biological cause of these dissimilarities remain to be elucidated. Mammals are characterized by a major change in reproductive strategies and it is conceivable that these changes subjected females to a significant evolutionary pressure that perfected the coupling between energy metabolism and reproduction. SCOPE OF REVIEW: This review will address the plausibility that female liver functions diverged significantly from males given the role of liver in the control of metabolism. Indeed, it is well known that the liver is sexually dimorphic, and this might be relevant to explain the lower susceptibility to hepatic diseases and liver-derived metabolic disturbances (such as the cardiovascular diseases) characteristic of females during their fertile period. Furthermore, estrogens and the hepatic ERα play a significant role in liver sexual-specific functions and in the control of metabolic functions. CONCLUSIONS: A better grasp of the role of male and female sex steroids in the liver of the two sexes may therefore represent an important element to conceive novel treatments aimed at preventing metabolic diseases particularly in ageing women or limiting undesired side effect in the treatment of gender dysphoria.


Liver Diseases/metabolism , Liver/metabolism , Metabolic Diseases/metabolism , Sex Characteristics , Animals , Female , Gonadal Hormones/metabolism , Humans , Liver/physiology , Liver Diseases/epidemiology , Male , Metabolic Diseases/epidemiology
19.
Sci Rep ; 7(1): 1194, 2017 04 26.
Article En | MEDLINE | ID: mdl-28446774

Recent work revealed the major role played by liver Estrogen Receptor α (ERα) in the regulation of metabolic and reproductive functions. By using mutant mice with liver-specific ablation of Erα, we here demonstrate that the hepatic ERα is essential for the modulation of the activity of Agouti Related Protein (AgRP) neurons in relation to the reproductive cycle and diet. Our results suggest that the alterations of hepatic lipid metabolism due to the lack of liver ERα activity are responsible for a neuroinflammatory status that induces refractoriness of AgRP neurons to reproductive and dietary stimuli. The study therefore points to the liver ERα as a necessary sensor for the coordination of systemic energy metabolism and reproductive functions.


Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/physiology , Estrogen Receptor alpha/metabolism , Liver/metabolism , Neurons/drug effects , Animals , Feeding Behavior , Female , Mice , Sexual Behavior, Animal
20.
Cell Metab ; 25(3): 499-505, 2017 03 07.
Article En | MEDLINE | ID: mdl-28190772

Spurred by current research policy, we are witnessing a significant growth in the number of studies that observe and describe sexual diversities in human physiology and sex prevalence in a large number of pathologies. Yet we are far from the comprehension of the mechanisms underpinning these differences, which are the result of a long evolutionary history. This Essay is meant to underline female reproductive function as a driver for the positive selection of the specific physiological features that explain male and female differential susceptibility to diseases and metabolic disturbances, in particular. A clear understanding of the causes underlying sexual dimorphisms in the physio-pathology is crucial for precision medicine.


Biological Evolution , Sex Characteristics , Animals , Energy Metabolism , Female , Food , Humans , Liver/metabolism , Male , Reproduction
...