Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ISME J ; 9(5): 1264-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25700337

RESUMEN

Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus.


Asunto(s)
Cianobacterias/genética , Genoma Bacteriano , Genómica , Nitrógeno/química , Prochlorococcus/genética , Synechococcus/genética , Mapeo Contig , Genoma , Nitratos/química , Océanos y Mares , Filogenia , Agua de Mar/microbiología , Urea/química , Microbiología del Agua
2.
Front Microbiol ; 5: 543, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25389417

RESUMEN

Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2-1.6 µm, >1.6 µm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 µm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2-1.6 µm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40-70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2-1.6 µm fraction was dominated (11-99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 µm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.

3.
mBio ; 5(6): e01966, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25352619

RESUMEN

UNLABELLED: A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2 at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fifty percent inhibition of N2 and N2O production by denitrification was achieved at 205 and 297 nM O2, respectively, whereas anammox was 50% inhibited at 886 nM O2. Coupled metatranscriptomic analysis revealed that transcripts encoding nitrous oxide reductase (nosZ), nitrite reductase (nirS), and nitric oxide reductase (norB) decreased in relative abundance above 200 nM O2. This O2 concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription in gammaproteobacteria, whereas the transcription of anammox narG, whose gene product is likely used to oxidatively replenish electrons for carbon fixation, was not inhibited. The taxonomic composition of transcripts differed among denitrification enzymes, suggesting that distinct groups of microorganisms mediate different steps of denitrification. Sulfide addition (1 µM) did not affect anammox or O2 inhibition kinetics but strongly stimulated N2O production by denitrification. These results identify new O2 thresholds for delimiting marine nitrogen loss and highlight the utility of integrating biogeochemical and metatranscriptomic analyses. IMPORTANCE: The removal of fixed nitrogen via anammox and denitrification associated with low O2 concentrations in oceanic oxygen minimum zones (OMZ) is a major sink in oceanic N budgets, yet the sensitivity and dynamics of these processes with respect to O2 are poorly known. The present study elucidated how nanomolar O2 concentrations affected nitrogen removal rates and expression of key nitrogen cycle genes in water from the eastern South Pacific OMZ, applying state-of-the-art (15)N techniques and metatranscriptomics. Rates of both denitrification and anammox responded rapidly and reversibly to changes in O2, but denitrification was more O2 sensitive than anammox. The transcription of key nitrogen cycle genes did not respond as clearly to O2, although expression of some of these genes decreased. Quantifying O2 sensitivity of these processes is essential for predicting through which pathways and in which environments, from wastewater treatment to the open oceans, nitrogen removal may occur.


Asunto(s)
Amoníaco/metabolismo , Gammaproteobacteria/efectos de los fármacos , Gammaproteobacteria/metabolismo , Expresión Génica/efectos de los fármacos , Oxígeno/metabolismo , Chile , Desnitrificación , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Oxidación-Reducción , Análisis de Secuencia de ADN
4.
ISME J ; 8(1): 187-211, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24030599

RESUMEN

Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 µm) and small (0.2-1.6 µm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 µm community. Functional gene composition also differed between fractions, with the >1.6 µm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.


Asunto(s)
Bacterias/genética , Biodiversidad , Metagenoma , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Chile , Metagenómica , Oxidación-Reducción , Oxígeno/análisis , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/química
5.
Environ Microbiol ; 14(11): 3043-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23039259

RESUMEN

Oxygen minimum zones (OMZs) are oceanographic features that affect ocean productivity and biodiversity, and contribute to ocean nitrogen loss and greenhouse gas emissions. Here we describe the viral communities associated with the Eastern Tropical South Pacific (ETSP) OMZ off Iquique, Chile for the first time through abundance estimates and viral metagenomic analysis. The viral-to-microbial ratio (VMR) in the ETSP OMZ fluctuated in the oxycline and declined in the anoxic core to below one on several occasions. The number of viral genotypes (unique genomes as defined by sequence assembly) ranged from 2040 at the surface to 98 in the oxycline, which is the lowest viral diversity recorded to date in the ocean. Within the ETSP OMZ viromes, only 4.95% of genotypes were shared between surface and anoxic core viromes using reciprocal BLASTn sequence comparison. ETSP virome comparison with surface marine viromes (Sargasso Sea, Gulf of Mexico, Kingman Reef, Chesapeake Bay) revealed a dissimilarity of ETSP OMZ viruses to those from other oceanic regions. From the 1.4 million non-redundant DNA sequences sampled within the altered oxygen conditions of the ETSP OMZ, more than 97.8% were novel. Of the average 3.2% of sequences that showed similarity to the SEED non-redundant database, phage sequences dominated the surface viromes, eukaryotic virus sequences dominated the oxycline viromes, and phage sequences dominated the anoxic core viromes. The viral community of the ETSP OMZ was characterized by fluctuations in abundance, taxa and diversity across the oxygen gradient. The ecological significance of these changes was difficult to predict; however, it appears that the reduction in oxygen coincides with an increased shedding of eukaryotic viruses in the oxycline, and a shift to unique viral genotypes in the anoxic core.


Asunto(s)
Biodiversidad , Oxígeno/metabolismo , Agua de Mar/virología , Fenómenos Fisiológicos de los Virus , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Chile , Genotipo , Nitrógeno/metabolismo , Océanos y Mares , Oxidación-Reducción , Filogenia , Azufre/metabolismo , Virus/genética
6.
Proc Natl Acad Sci U S A ; 109(40): 15996-6003, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22967509

RESUMEN

Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N(2)) and nitrous oxide (N(2)O) gases. Anaerobic microbial processes, including the two pathways of N(2) production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.


Asunto(s)
Biota , Monitoreo del Ambiente/estadística & datos numéricos , Metagenoma/genética , Oxígeno/análisis , Agua de Mar/química , Microbiología del Agua , Anaerobiosis , Oceanografía , Océanos y Mares , Oxígeno/química
7.
Environ Microbiol ; 14(1): 23-40, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21210935

RESUMEN

Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics in these environments. Here, we present a metatranscriptomic survey of microbial community metabolism in the Eastern Tropical South Pacific OMZ off northern Chile. Community RNA was sampled in late austral autumn from four depths (50, 85, 110, 200 m) extending across the oxycline and into the upper OMZ. Shotgun pyrosequencing of cDNA yielded 180,000 to 550,000 transcript sequences per depth. Based on functional gene representation, transcriptome samples clustered apart from corresponding metagenome samples from the same depth, highlighting the discrepancies between metabolic potential and actual transcription. BLAST-based characterizations of non-ribosomal RNA sequences revealed a dominance of genes involved with both oxidative (nitrification) and reductive (anammox, denitrification) components of the marine nitrogen cycle. Using annotations of protein-coding genes as proxies for taxonomic affiliation, we observed depth-specific changes in gene expression by key functional taxonomic groups. Notably, transcripts most closely matching the genome of the ammonia-oxidizing archaeon Nitrosopumilus maritimus dominated the transcriptome in the upper three depths, representing one in five protein-coding transcripts at 85 m. In contrast, transcripts matching the anammox bacterium Kuenenia stuttgartiensis dominated at the core of the OMZ (200 m; 1 in 12 protein-coding transcripts). The distribution of N. maritimus-like transcripts paralleled that of transcripts matching ammonia monooxygenase genes, which, despite being represented by both bacterial and archaeal sequences in the community DNA, were dominated (> 99%) by archaeal sequences in the RNA, suggesting a substantial role for archaeal nitrification in the upper OMZ. These data, as well as those describing other key OMZ metabolic processes (e.g. sulfur oxidation), highlight gene-specific expression patterns in the context of the entire community transcriptome, as well as identify key functional groups for taxon-specific genomic profiling.


Asunto(s)
Archaea/genética , Bacterias/genética , Agua de Mar/microbiología , Transcriptoma , Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Biodiversidad , Chile , Metagenoma , Nitrificación , Oxidación-Reducción , Oxidorreductasas/genética , Oxígeno/metabolismo , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Agua de Mar/química , Análisis de Secuencia de ADN
8.
Science ; 330(6009): 1375-8, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21071631

RESUMEN

Nitrogen cycling is normally thought to dominate the biogeochemistry and microbial ecology of oxygen-minimum zones in marine environments. Through a combination of molecular techniques and process rate measurements, we showed that both sulfate reduction and sulfide oxidation contribute to energy flux and elemental cycling in oxygen-free waters off the coast of northern Chile. These processes may have been overlooked because in nature, the sulfide produced by sulfate reduction immediately oxidizes back to sulfate. This cryptic sulfur cycle is linked to anammox and other nitrogen cycling processes, suggesting that it may influence biogeochemical cycling in the global ocean.


Asunto(s)
Bacterias/metabolismo , Ecosistema , Oxígeno/análisis , Agua de Mar/microbiología , Azufre/metabolismo , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Chile , Deltaproteobacteria/clasificación , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Desnitrificación , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genes Bacterianos , Metagenoma , Nitratos/metabolismo , Nitritos/metabolismo , Ciclo del Nitrógeno , Oxidación-Reducción , Océano Pacífico , Compuestos de Amonio Cuaternario/metabolismo , Agua de Mar/química , Análisis de Secuencia de ADN , Sulfatos/metabolismo , Sulfuros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA