Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Sci Adv ; 10(16): eado0668, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38630815

Quantum entanglement between the degrees of freedom encountered in the classical world is challenging to observe due to the surrounding environment. To elucidate this issue, we investigate the entanglement generated over ultrafast timescales in a bipartite quantum system comprising two massive particles: a free-moving photoelectron, which expands to a mesoscopic length scale, and a light-dressed atomic ion, which represents a hybrid state of light and matter. Although the photoelectron spectra are measured classically, the entanglement allows us to reveal information about the dressed-state dynamics of the ion and the femtosecond extreme ultraviolet pulses delivered by a seeded free-electron laser. The observed generation of entanglement is interpreted using the time-dependent von Neumann entropy. Our results unveil the potential for using short-wavelength coherent light pulses from free-electron lasers to generate entangled photoelectron and ion systems for studying spooky action at a distance.

2.
J Chem Phys ; 158(15)2023 Apr 21.
Article En | MEDLINE | ID: mdl-37094020

Spin polarization in the multiphoton above-threshold ionization of 5p3/2- and 5p1/2-electrons of Xe with intense 395nm, circularly polarized laser pulses, is investigated theoretically. For this purpose, we solve the time-dependent Schrödinger equation on the basis of spherical spinors. We, thus, simultaneously propagate the spin-up and spin-down single-active-electron wave packets, driven by the laser pulses in the ionic potential, which includes the spin-orbit interaction explicitly. The present theoretical results are in good agreement with the recent experimental results [D. Trabert et al., Phys. Rev. Lett. 120, 043202 (2018)].

3.
Phys Chem Chem Phys ; 24(43): 26458-26465, 2022 Nov 09.
Article En | MEDLINE | ID: mdl-36305893

X-Ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight into the structure, handedness, and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular-frame diffraction pattern of core-shell photoelectrons and ab initio computations. Using a loop-like analysis scheme, we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, e.g., protons.


Electrons , Molecular Structure , Stereoisomerism , X-Rays
4.
Nature ; 608(7923): 488-493, 2022 08.
Article En | MEDLINE | ID: mdl-35978126

Rabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field1. They are ubiquitous in physics with applications in different areas such as photonics2, nano-electronics3, electron microscopy4 and quantum information5. While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light-matter interactions within the rotating-wave approximation6. Although intense nanometre-wavelength light sources have been available for more than a decade7-9, Rabi dynamics at such short wavelengths has not been directly observed. Here we show that femtosecond extreme-ultraviolet pulses from a seeded free-electron laser10 can drive Rabi dynamics between the ground state and an excited state in helium atoms. The measured photoelectron signal reveals an Autler-Townes doublet and an avoided crossing, phenomena that are both fundamental to coherent atom-field interactions11. Using an analytical model derived from perturbation theory on top of the Rabi model, we find that the ultrafast build-up of the doublet structure carries the signature of a quantum interference effect between resonant and non-resonant photoionization pathways. Given the recent availability of intense attosecond12 and few-femtosecond13 extreme-ultraviolet pulses, our results unfold opportunities to carry out ultrafast manipulation of coherent processes at short wavelengths using free-electron lasers.

5.
Phys Chem Chem Phys ; 24(22): 13597-13604, 2022 Jun 08.
Article En | MEDLINE | ID: mdl-35621377

We report a joint experimental and theoretical study of the differential photoelectron circular dichroism (PECD) in inner-shell photoionization of uniaxially oriented trifluoromethyloxirane. By adjusting the photon energy of the circularly polarized synchrotron radiation, we address 1s-photoionization of the oxygen, different carbon, and all fluorine atoms. The photon energies were chosen such that in all cases electrons with a similar kinetic energy of about 11 eV are emitted. Employing coincident detection of electrons and fragment ions, we concentrate on identical molecular fragmentation channels for all of the electron-emitter scenarios. Thereby, we systematically examine the influence of the emission site of the photoelectron wave on the differential PECD. We observe large differences in the PECD signals. The present experimental results are supported by corresponding relaxed-core Hartree-Fock calculations.

6.
Front Chem ; 10: 809137, 2022.
Article En | MEDLINE | ID: mdl-35174138

We investigate theoretically the high-order harmonic generation in beryllium atom irradiated by a short 1850 nm linearly polarized laser pulse in the intermediate strong-field ionization regime with the Keldysh parameter of 0.85. To this end, the respective time-dependent Schrödinger equation is solved by the time-dependent restricted-active-space configuration-interaction (TD-RASCI) method. By systematically increasing the active space of included configurations, we demonstrate an individual effect of different physical processes evoked by the pulse, which, all together, significantly enrich and extend the computed high-order harmonic generation spectrum.

7.
J Chem Phys ; 156(3): 031101, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35065549

Photoelectron circular dichroism (PECD) in the one-photon detachment of a model chiral anionic system is studied theoretically by the single center method. The computed chiral asymmetry, characterized by the dichroic parameter ß1 of up to about ±3%, is in good accord with the first experimental observations of the effect in photodetachment of amino acid anions [P. Krüger and K. M. Weitzel, Angew. Chem., Int. Ed. 60, 17861 (2021)]. Our findings confirm a general assumption that the magnitude of PECD is governed by the ability of an outgoing photoelectron wave packet to accumulate characteristic chiral asymmetry from the short-range part of the molecular potential.

8.
Commun Chem ; 5(1): 42, 2022 Mar 28.
Article En | MEDLINE | ID: mdl-36697752

Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2 and 4d5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.

9.
Nat Commun ; 12(1): 6657, 2021 Nov 17.
Article En | MEDLINE | ID: mdl-34789736

How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion's potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons' emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.

10.
Phys Chem Chem Phys ; 23(32): 17248-17258, 2021 Aug 28.
Article En | MEDLINE | ID: mdl-34346440

The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincident electron and fragment ion detection using cold target recoil ion momentum spectroscopy. The corresponding calculations were performed by means of the single center method within the relaxed-core Hartree-Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare the results for the differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl group by the trifluoromethyl group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in the literature.

11.
Commun Chem ; 4(1): 119, 2021 Aug 12.
Article En | MEDLINE | ID: mdl-36697819

Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.

12.
Phys Rev Lett ; 125(16): 163201, 2020 Oct 16.
Article En | MEDLINE | ID: mdl-33124863

We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

13.
Chem Rev ; 120(20): 11295-11369, 2020 10 28.
Article En | MEDLINE | ID: mdl-33035051

Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.

14.
Phys Rev Lett ; 124(23): 233201, 2020 Jun 12.
Article En | MEDLINE | ID: mdl-32603143

We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV≤E_{γ}≤40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system's center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by -3/5 times the photon momentum. These results experimentally confirm a 90-year-old prediction.

15.
J Chem Phys ; 152(4): 044302, 2020 Jan 31.
Article En | MEDLINE | ID: mdl-32007036

Photoelectron circular dichroism (PECD) in different regimes of multiphoton ionization of fenchone is studied theoretically using the time-dependent single center method. In particular, we investigate the chiral response to the one-color multiphoton or strong-field ionization by circularly polarized 400 nm and 814 nm optical laser pulses or 1850 nm infrared pulse. In addition, the broadband ionization by short coherent circularly polarized 413-1240 nm spanning pulse is considered. Finally, the two-color ionization by the phase-locked 400 nm and 800 nm pulses, which are linearly polarized in mutually orthogonal directions, is investigated. The present computational results on the one-color multiphoton ionization of fenchone are in agreement with the available experimental data. For the ionization of fenchone by broadband and bichromatic pulses, the present theoretical study predicts substantial multiphoton PECDs.

16.
Phys Rev Lett ; 122(18): 183201, 2019 May 10.
Article En | MEDLINE | ID: mdl-31144868

A general scheme to get insight and to control postcollision interaction (PCI) by means of sequential double ionization with two high-frequency pulses is discussed. In particular, we propose to consider PCI of a slow photoelectron released by the pump pulse from a neutral atom with a fast photoelectron released by the time-delayed probe pulse from the created ion. This scheme is exemplified by the ab initio calculations performed for the prototypical helium atom. In order to visualize PCI effects in real time and real space, the corresponding time-dependent Schrödinger equation is solved by propagating two-electron wave packets in terms of essential stationary eigenstates of the unperturbed Hamiltonian. It is demonstrated that the exchange of energy between the slow and fast photoelectron wave packets in continuum, as well as the recapture of threshold photoelectrons owing to the PCI, can be controlled by the properties of the ionizing pulses and the time delay between them.

17.
J Chem Phys ; 148(21): 214307, 2018 Jun 07.
Article En | MEDLINE | ID: mdl-29884056

Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.

18.
Molecules ; 23(7)2018 06 26.
Article En | MEDLINE | ID: mdl-29949868

Dichroism in angle-resolved spectra of circularly polarized fluorescence from freely-rotating CO molecules was studied experimentally and theoretically. For this purpose, carbon monoxide in the gas phase was exposed to circularly polarized soft X-ray synchrotron radiation. The photon energy was tuned across the C 1s→π* resonant excitation, which decayed via the participator Auger transition into the CO⁺ A ²Π state. The dichroic parameter ß1 of the subsequent CO⁺ (A ²Π → X ²Σ⁺) visible fluorescence was measured by photon-induced fluorescence spectroscopy. Present experimental results are explained with the ab initio electronic structure and dynamics calculations performed by the single center method. Our results confirm the possibility to perform partial wave analysis of the emitted photoelectrons in closed-shell molecules.


Carbon Monoxide/chemistry , Circular Dichroism , Models, Theoretical , Spectrometry, Fluorescence
19.
Phys Rev Lett ; 121(25): 253201, 2018 Dec 21.
Article En | MEDLINE | ID: mdl-30608808

Using a model methanelike chiral system, we theoretically demonstrate a possibility to access photoelectron circular dichroism (PECD) by a single experiment with two overlapping laser pulses of carrier frequencies ω and 2ω, which are linearly polarized in two mutually orthogonal directions. Depending on the relative phase, the resulting electric field can be tailored to have two different rotational directions in the upper and lower hemispheres along the polarization of the ω pulse. We predict a strong forward-backward asymmetry in the emission of photoelectrons from randomly oriented samples, which has an opposite sign in the upper and lower hemispheres. The predicted PECD effect is phase and enantiomer sensitive, providing new insight in this fascinating fundamental phenomenon. The effect can be optimized by varying relative intensities of the pulses.

20.
J Phys Chem Lett ; 8(13): 2780-2786, 2017 Jul 06.
Article En | MEDLINE | ID: mdl-28582620

Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical (neglecting a minuscular effect of the weak interaction), it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer. Indeed, photoionization of randomly oriented enantiomers by left or right circularly polarized light results in a slightly different electron flux parallel or antiparallel with respect to the photon propagation direction-an effect termed photoelectron circular dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects such as the circular dichroism in angular distributions (CDAD). Accordingly, distinct spatial orientations of a chiral molecule enhance the PECD by a factor of about 10.

...