Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Article En | MEDLINE | ID: mdl-37183572

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Intellectual Disability , Neurodevelopmental Disorders , Adult , Child , Female , Humans , Infant , Male , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Phenotype , Protein Phosphatase 2C/genetics , Retrospective Studies , Vomiting , Child, Preschool , Adolescent , Young Adult , Middle Aged
2.
J Med Genet ; 60(6): 620-626, 2023 06.
Article En | MEDLINE | ID: mdl-36368868

BACKGROUND: Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. METHODS: We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. RESULTS: We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. CONCLUSIONS: Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.


Cleft Lip , Cleft Palate , Goldenhar Syndrome , Humans , Animals , Goldenhar Syndrome/genetics , Zebrafish/genetics , DNA Copy Number Variations/genetics , Otx Transcription Factors/genetics
3.
JIMD Rep ; 63(5): 420-424, 2022 Sep.
Article En | MEDLINE | ID: mdl-36101823

N-acetylglutamate synthase (NAGS) deficiency is a rare autosomal recessive disorder, which results in the inability to activate the key urea cycle enzyme, carbamoylphosphate synthetase 1 (CPS1). Patients often suffer life-threatening episodes of hyperammonaemia, both in the neonatal period and also at subsequent times of catabolic stress. Because NAGS generates the cofactor for CPS1, these two disorders are difficult to distinguish biochemically. However, there have now been numerous case reports of 3-methylglutaconic aciduria (3-MGA), a marker seen in mitochondrial disorders, occurring in CPS1 deficiency. Previously, this had not been reported in NAGS deficiency. We report a four-day-old neonate who was noted to have 3-MGA at the time of significant hyperammonaemia and lactic acidosis. Low plasma citrulline and borderline orotic aciduria were additional findings that suggested a proximal urea cycle disorder. Subsequent molecular testing identified bi-allelic pathogenic variants in NAGS. The 3-MGA was present at the time of persistent lactic acidosis, but improved with normalization of serum lactate, suggesting that it may reflect secondary mitochondrial dysfunction. NAGS deficiency should therefore also be considered in patients with hyperammonaemia and 3-MGA. Studies in larger numbers of patients are required to determine whether it could be a biomarker for severe decompensations.

...