Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Autoimmun ; 145: 103217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581915

RESUMEN

The autoimmunity-promoting cytokine, Interleukin-15 (IL-15), is often claimed to be a key pathogenic cytokine in alopecia areata (AA). Yet, rhIL-15 promotes human hair follicle (HF) growth ex vivo. We have asked whether the expression of IL-15 and its receptor (IL-15R) isoforms is altered in human AA and how IL-15 impacts on human HF immune privilege (HF-IP) in the presence/absence of interferon-γ (IFNγ), the well-documented key AA-pathogenic cytokine, as well as on hair regrowth after experimental AA induction in vivo. Quantitative immunohistomorphometry showed the number of perifollicular IL-15+ T cells in AA skin biopsies to be significantly increased compared to healthy control skin, while IL-15, IL-15Rα, and IL-15Rγ protein expression within the hair bulb were significantly down-regulated in AA HFs. In organ-cultured human scalp HFs, rhIL-15 significantly reduced hair bulb expression of MICA, the key "danger" signal in AA pathogenesis, and increased production of the HF-IP guardian, α-MSH. Crucially, ex vivo, rhIL-15 prevented IFNγ-induced HF-IP collapse, restored a collapsed HF-IP by IL-15Rα-dependent signaling (as documented by IL-15Rα-silencing), and protected AA-preventive immunoinhibitory iNKT10 cells from IFNγ-induced apoptosis. rhIL-15 even promoted hair regrowth after experimental AA induction in human scalp skin xenotransplants on SCID/beige mice in vivo. Our data introduce IL-15 as a novel, functionally important HF-IP guardian whose signaling is constitutively defective in scalp HFs of AA patients. Our data suggest that selective stimulation of intrafollicular IL-15Rα signaling could become a novel therapeutic approach in AA management, while blocking it pharmacologically may hinder both HF-IP restoration and hair re-growth and may thus make HFs more vulnerable to AA relapse.


Asunto(s)
Alopecia Areata , Folículo Piloso , Privilegio Inmunológico , Interferón gamma , Interleucina-15 , Interleucina-15/metabolismo , Interleucina-15/inmunología , Folículo Piloso/inmunología , Folículo Piloso/metabolismo , Humanos , Animales , Alopecia Areata/inmunología , Alopecia Areata/metabolismo , Ratones , Interferón gamma/metabolismo , Femenino , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-15/inmunología , Masculino , Adulto , Persona de Mediana Edad , Subunidad alfa del Receptor de Interleucina-15/metabolismo , Subunidad alfa del Receptor de Interleucina-15/inmunología , Piel/inmunología , Piel/metabolismo , Piel/patología , Modelos Animales de Enfermedad
3.
EMBO Rep ; 24(7): e56574, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212043

RESUMEN

Dysregulation of the activity of the mechanistic target of rapamycin complex 1 (mTORC1) is commonly linked to aging, cancer, and genetic disorders such as tuberous sclerosis (TS), a rare neurodevelopmental multisystemic disease characterized by benign tumors, seizures, and intellectual disability. Although patches of white hair on the scalp (poliosis) are considered as early signs of TS, the underlying molecular mechanisms and potential involvement of mTORC1 in hair depigmentation remain unclear. Here, we have used healthy, organ-cultured human scalp hair follicles (HFs) to interrogate the role of mTORC1 in a prototypic human (mini-)organ. Gray/white HFs exhibit high mTORC1 activity, while mTORC1 inhibition by rapamycin stimulated HF growth and pigmentation, even in gray/white HFs that still contained some surviving melanocytes. Mechanistically, this occurred via increased intrafollicular production of the melanotropic hormone, α-MSH. In contrast, knockdown of intrafollicular TSC2, a negative regulator of mTORC1, significantly reduced HF pigmentation. Our findings introduce mTORC1 activity as an important negative regulator of human HF growth and pigmentation and suggest that pharmacological mTORC1 inhibition could become a novel strategy in the management of hair loss and depigmentation disorders.


Asunto(s)
Folículo Piloso , Pigmentación , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Pigmentación/genética , Melanocitos , Color del Cabello/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...