Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050279

RESUMEN

Neodymium (Nd) is a key rare earth element (REE) needed for the future of incoming technologies including road transport and power generation. Hereby, a sustainable adsorbent material for recovering Nd from the aqueous phase using a residue from the saccharification process is presented. Banana rachis (BR) was treated with cellulases and polyethylene glycol (PEG) to produce fermentable sugars prior to applying the final residue (BR-PEG) as an adsorbent material. BR-PEG was characterized by scanning electron microscopy (SEM), compositional analysis, pH of zero charge (pHpzc), Fourier transform infrared analysis (FTIR) and thermogravimetric analysis (TGA). A surface response experimental design was used for obtaining the optimized adsorption conditions in terms of the pH of the aqueous phase and the particle size. With the optimal conditions, equilibrium isotherms, kinetics and adsorption-desorption cycles were performed. The optimal pH and particle size were 4.5 and 209.19 µm, respectively. BR-PEG presented equilibrium kinetics after 20 min and maximum adsorption capacities of 44.11 mg/g. In terms of reusage, BR-PEG can be efficiently reused for five adsorption-desorption cycles. BR-PEG was demonstrated to be a low-cost bioresourced alternative for recovering Nd by adsorption.

2.
J Environ Sci (China) ; 106: 105-115, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34210426

RESUMEN

Our present study was to prepare a biomass-supported adsorbents with high adsorptive capacity and high selectivity to prevent the accelerated eutrophication in water body. To this end, different metal hydroxide (La, Zr and Fe) first was successfully loaded on chitosan microspheres. Then the quaternary ammonium group with different content was introduced into the adsorbent by polymerization. By comparison of adsorption properties, chitosan-La(OH)3-quaternary ammonium-20% (CS-La-N-20%) has strong adsorption to phosphate (160 mg/g) by immobilizing nano-sized La(OH)3 within a quaternary-aminated chitosan and it maintain high adsorption in the presence of salt ions. The pH results indicated that the CS-La-N-20% would effectively sequestrate phosphate over a wide pH range between 3 and 7 without significant La3+ leaching. What's more, adsorption capacity on the introduce of positively charged quanternary-aminated groups was significantly higher than that of the unmodified adsorbents at alkaline conditions. The column adsorption capacity reached 1300 bed volumes (BV) when phosphate concentration decreased until 0.5 mg/L at 6 BV/hr. The column adsorption/desorption reveals that no significant capacity loss is observed, indicating excellent stability and repeated use property. Characterizations revealed that phosphate adsorption on CS-La-N-20% through ligand exchange (impregnated nano-La(OH)3) and electrostatic attraction (positively charged quanternary-aminated groups). All the results suggested that CS-La-N-20% can serve as a promising adsorbent for preferable phosphate removal in realistic application.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Hidróxidos , Cinética , Fosfatos
3.
Molecules ; 25(6)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168823

RESUMEN

Removal of heavy metals from wastewater is mandatory in order to avoid water pollution of natural reservoirs. In the present study, layered double hydroxide (LDH) materials were evaluated for removal of zinc from aqueous solutions. Materials thus prepared were impregnated with cyanex 272 using the dry method. These materials were characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermal analysis. Batch shaking adsorption experiments were performed in order to examine contact time and extraction capacity in the removal process. Results showed that the equilibrium time of Zn (II) extraction is about 4 h for Mg2Al-CO3 and Mg2Al-CO3-cyanex 272, 6 h for Zn2Al-CO3, and 24 h for Zn2Al-CO3-cyanex 272. The experimental equilibrium data were tested for Langmuir, and Freundlich isotherm models. Correlation coefficients indicate that experimental results are in a good agreement with Langmuir's model for zinc ions. Pseudo-first, second-order, Elovich, and intraparticular kinetic models were used to describe kinetic data. It was determined that removal of Zn2+ was well-fitted by a second-order reaction kinetic. A maximum capacity of 280 mg/g was obtained by Zn2Al-CO3-cyanex 272.


Asunto(s)
Hidróxidos/química , Ácidos Fosfínicos/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Zinc/aislamiento & purificación , Adsorción , Humanos , Cinética , Modelos Estadísticos , Aguas Residuales/química
4.
Polymers (Basel) ; 11(9)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527526

RESUMEN

Boron removal was evaluated in the present work by using calcium alginate beads (CA) and a novel composite based on alginate-alumina (CAAl) as sorbents in a batch system. The effects of different parameters such as pH, temperature, contact time, and composition of alginate (at different concentrations of guluronic and mannuronic acids) on boron sorption were investigated. The results confirm that calcium alginate beads (CA) exhibited a better adsorption capacity in a slightly basic medium, and the composite alginate-alumina (CAAl) exhibited improved boron removal at neutral pH. Sorption isotherm studies were performed and the Langmuir isotherm model was found to fit the experimental data. The maximum sorption capacities were 4.5 mmol g-1 and 5.2 mmol g-1, using CA and CAAl, respectively. Thermodynamic parameters such as change in free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were also determined. The pseudo-first-order and pseudo-second-order rate equations (PFORE and PSORE, respectively) were tested to fit the kinetic data; the experimental results can be better described with PSORE. The regeneration of the loaded sorbents was demonstrated by using dilute HCl solution (distilled water at pH 3) as eluent for metal recovery.

5.
Polymers (Basel) ; 11(2)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30960324

RESUMEN

A new composite material based on alginate and magadiite/Di-(2-ethylhexyl) phosphoric acid (CAM-D2EHPA) was successfully prepared by previous impregnation of layered magadiite with D2EHPA extractant, and then immobilized into the alginate matrix. Air dried beads of CAM-D2EHPA were characterized by FTIR and SEM⁻EDX techniques. The sorbent was used for the separation of lead and nickel from nitrate solutions; the main parameters of sorption such as contact time, pH of the solution, and initial metal concentration were studied. The beads recovered 94% of Pb(II) and 65% of Ni(II) at pH 4 from dilute solutions containing 10 mg L-1 of metal (sorbent dosage, S.D. 1 g L-1). The equilibrium data gave a better fit using the Langmuir model, and kinetic profiles were fitted using a pseudo-second order rate equation. The maximum sorption capacities obtained (at pH 4) were 197 mg g-1 and 44 mg g-1 for lead and nickel, respectively. The regeneration of the sorbent was efficiently carried out with a dilute solution of HNO3 (0.5 M). The composite material was reused in 10 sorption⁻elution cycles with no significant differences on sorption uptake. A study with synthetic effluents containing an equimolar concentration of both metals indicated a better selectivity towards lead ions.

6.
Polymers (Basel) ; 11(2)2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30960335

RESUMEN

The presence of antimony(III) in water represents a worldwide concern, mainly due to its high toxicity and carcinogenicity potential. It can be separated from water by the use of sustainable biopolymers such as chitosan or its derivatives. The present study applied chitosan modified with iron(III) beads to Sb(III) removal from aqueous solutions. The resulting material performed with a high adsorption capacity of 98.68 mg/g. Material characterization consisted of Raman spectroscopy (RS), X-ray diffraction (XRD), scanning electron microscope observations (SEM-EDX), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc). The adsorption study included pH study, effect of initial concentration, kinetics, ion effect, and reusability assessment. The RS, XRD, and FTIR results indicated that the main functional groups in the composite were related to hydroxyl and amino groups, and iron oxyhydroxide species of α-FeO(OH). The pHpzc was found to be 7.41. The best adsorption efficiency was set at pH 6. The equilibrium isotherms were better fitted with a non-linear Langmuir model, and the kinetics data were fitted with a pseudo-second order rate equation. The incorporation of iron into the chitosan matrix improved the Sb(III) uptake by 47.9%, compared with neat chitosan (CS). The material did not exhibit an impact in its performance in the presence of other ions, and it could be reused for up to three adsorption⁻desorption cycles.

7.
Polymers (Basel) ; 10(2)2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30966240

RESUMEN

A low cost composite material was synthesized for neodymium recovery from dilute aqueous solutions. The in-situ production of the composite containing chitosan and iron(III) hydroxide (ChiFer(III)) was improved and the results were compared with raw chitosan particles. The sorbent was characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive X-ray analyses (SEM-EDX). The equilibrium studies were performed using firstly a batch system, and secondly a continuous system. The sorption isotherms were fitted with the Langmuir, Freundlich, and Sips models; experimental data was better described with the Langmuir equation and the maximum sorption capacity was 13.8 mg g-1 at pH 4. The introduction of iron into the biopolymer matrix increases by four times the sorption uptake of the chitosan; the individual sorption capacity of iron (into the composite) was calculated as 30.9 mg Nd/g Fe. The experimental results of the columns were fitted adequately using the Thomas model. As an approach to Nd-Fe-B permanent magnets effluents, a synthetic dilute effluent was simulated at pH 4, in order to evaluate the selectivity of the sorbent material; the overshooting of boron in the column system confirmed the higher selectivity toward neodymium ions. The elution step was carried out using MilliQ-water with the pH set to 3.5 (dilute HCl solution).

8.
Polymers (Basel) ; 10(4)2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30966402

RESUMEN

The present work describes the study of mercury Hg(II) and lead Pb(II) removal in single and binary component systems into easily prepared chitosan-iron(III) bio-composite beads. Scanning electron microscopy and energy-dispersive X-ray (SEM-EDX) analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and point of zero charge (pHpzc) analysis were carried out. The experimental set covered pH study, single and competitive equilibrium, kinetics, chloride and sulfate effects as well as sorption⁻desorption cycles. In single systems, the Langmuir nonlinear model fitted the experimental data better than the Freundlich and Sips equations. The sorbent material has more affinity to Hg(II) rather than Pb(II) ions, the maximum sorption capacities were 1.8 mmol·g-1 and 0.56 mmol·g-1 for Hg(II) and Pb(II), respectively. The binary systems data were adjusted with competitive Langmuir isotherm model. The presence of sulfate ions in the multicomponent system [Hg(II)-Pb(II)] had a lesser impact on the sorption efficiency than did chloride ions, however, the presence of chloride ions improves the selectivity towards Hg(II) ions. The bio-based material showed good recovery performance of metal ions along three sorption⁻desorption cycles.

9.
Environ Sci Pollut Res Int ; 24(1): 15-24, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26667644

RESUMEN

A highly sensitive, specific, simple, and rapid chemiluminescence enzyme immunoassay (CLEIA) was developed for the determination of microcystin-LR (MC-LR) by using strategies for oriented immobilization of functionally intact polyclonal antibodies on chitosan surface. Several physicochemical parameters such as metal ion adsorption, hexahistidine-tagged Protein G sorption, the dilution ratio polyclonal antibody concentration, and peroxidase-labeled MC-LR concentration were studied and optimized. The sorption in batch system of G-histidine and G-proteins was studied on a novel sorbent consisting of chitosan/divalent metal ions. Transition metals as Ni++ and Zn++ were immobilized through interaction with -NH2 groups of chitosan in order to supply a material capable to efficiently remove the proteins from aqueous solutions. The maximum uptake of divalent metals onto the chitosan material was found to be 230 mg g-1 for Zn++ and 62 mg g-1 for Ni++. Experimental data were evaluated using the Langmuir and Freundlich models; the results were well fitted with the Langmuir model; chitosan/Ni++ foam was found to be the best sorbent for G-protein, maximum sorption capacity obtained was 17 mg g-1, and chitosan/Zn++ was found to be the best for G-histidine with a maximum sorption capacity of 44 mg g-1. Kinetic data was evaluated with pseudo-first- and pseudo-second-order models; the sorption kinetics were in all cases better represented by a pseudo-second-order model. Under optimum conditions, the calibration curve obtained for MC-LR gave detection limits of 0.5 ± 0.06 µg L-1, the 50 % inhibition concentration (IC50) was 2.75 ± 0.03 µg L-1, and the quantitative detection range was 0.5-25 µg L-1. The limit of detection (LOD) attained from the calibration curves and the results obtained demonstrate the potential use of CLEIA with chitosan support as a screening tool for the analysis of pollutants in environmental samples.


Asunto(s)
Mediciones Luminiscentes/métodos , Microcistinas/química , Adsorción , Anticuerpos Inmovilizados , Quitosano/química , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Técnicas para Inmunoenzimas , Iones , Cinética , Toxinas Marinas , Sensibilidad y Especificidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...