Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Biol ; 100(7): 1019-1028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38810111

RESUMEN

PURPOSE: This interlaboratory comparison was conducted to evaluate the performance of the Latin-American Biodosimetry Network (LBDNet) in analyzing digitized images for scoring dicentric chromosomes from in vitro irradiated blood samples. The exercise also assessed the use of weighted robust algorithms to compensate the uneven expertise among the participating laboratories. METHODS: Three sets of coded images obtained through the dicentric chromosome assay from blood samples irradiated at 1.5 Gy (sample A) and 4 Gy (sample B), as well as a non-irradiated whole blood sample (sample C), were shared among LBDNet laboratories. The images were captured using the Metafer4 platform coupled with the AutoCapt module. The laboratories were requested to perform triage scoring, conventional scoring, and dose estimation. The dose estimation was carried out using either their laboratory calibration curve or a common calibration curve. A comparative statistical analysis was conducted using a weighted robust Hampel algorithm and z score to compensate for uneven expertise in dicentric analysis and dose assessment among all laboratories. RESULTS: Out of twelve laboratories, one had unsatisfactory estimated doses at 0 Gy, and two had unsatisfactory estimated doses at 1.5 Gy when using their own calibration curve and triage scoring mode. However, all doses were satisfactory at 4 Gy. Six laboratories had estimated doses within 95% uncertainty limits at 0 Gy, seven at 1.5 Gy, and four at 4 Gy. While the mean dose for sample C was significantly biased using robust algorithms, applying weights to compensate for the laboratory's analysis expertise reduced the bias by half. The bias from delivered doses was only notable for sample C. Using the common calibration curve for dose estimation reduced the standard deviation (s*) estimated by robust methods for all three samples. CONCLUSIONS: The results underscore the significance of performing interlaboratory comparison exercises that involve digitized and electronically transmitted images, even when analyzing non-irradiated samples. In situations where the participating laboratories possess different levels of proficiency, it may prove essential to employ weighted robust algorithms to achieve precise outcomes.


Asunto(s)
Aberraciones Cromosómicas , Humanos , Aberraciones Cromosómicas/efectos de la radiación , Algoritmos , Laboratorios/normas , Radiometría/métodos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Radiat Prot Dosimetry ; 159(1-4): 3-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24743754

RESUMEN

It has been observed that victims of accidental overexposures show better chance of survival if they receive medical treatment early. The increased risk of scenarios involving mass casualties has stimulated the scientific community to develop tools that would help the medical doctors to treat victims. The biological dosimetry has become a routine test to estimate the dose, supplementing physical and clinical dosimetry. In case of radiation emergencies, in order to provide timely and effectively biological dosimetry assistance it is essential to guarantee an adequate transport of blood samples in principal, for providing support to countries that do not have biodosimetry laboratories. The objective of the present paper is to provide general guidelines, summarised in 10 points, for timely and proper receiving and sending of blood samples under National and International regulations, for safe and expeditious international transport. These guidelines cover the classification, packaging, marking, labelling, refrigeration and documentation requirements for the international shipping of blood samples and pellets, to provide assistance missions with a tool that would contribute with the preparedness for an effective biodosimetric response in cases of radiological or nuclear emergencies.


Asunto(s)
Carga Corporal (Radioterapia) , Guías como Asunto , Traumatismos por Radiación/diagnóstico , Radiometría/métodos , Medición de Riesgo , Administración de la Seguridad/métodos , Transportes , Humanos , Agencias Internacionales , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...