Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Sci Adv ; 10(20): eadk9076, 2024 May 17.
Article En | MEDLINE | ID: mdl-38748792

Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.


Alcohol Oxidoreductases , DNA-Binding Proteins , Leukemia, Myeloid, Acute , MDS1 and EVI1 Complex Locus Protein , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein/metabolism , MDS1 and EVI1 Complex Locus Protein/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Humans , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Protein Binding , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Nat Cell Biol ; 26(5): 770-783, 2024 May.
Article En | MEDLINE | ID: mdl-38600236

DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.


DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , Proteolysis , RNA Polymerase II , Transcription, Genetic , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Damage , Proteasome Endopeptidase Complex/metabolism , Carrier Proteins , Receptors, Interleukin-17
3.
J Proteomics ; 291: 105037, 2024 01 16.
Article En | MEDLINE | ID: mdl-38288553

Pompe disease is a lysosomal storage disorder caused by deficiency of acid alpha-glucosidase (GAA), resulting in glycogen accumulation with profound pathology in skeletal muscle. We recently developed an optimized form of lentiviral gene therapy for Pompe disease in which a codon-optimized version of the GAA transgene (LV-GAAco) was fused to an insulin-like growth factor 2 (IGF2) peptide (LV-IGF2.GAAco), to promote cellular uptake via the cation-independent mannose-6-phosphate/IGF2 receptor. Lentiviral gene therapy with LV-IGF2.GAAco showed superior efficacy in heart, skeletal muscle, and brain of Gaa -/- mice compared to gene therapy with untagged LV-GAAco. Here, we used quantitative mass spectrometry using TMT labeling to analyze the muscle proteome and the response to gene therapy in Gaa -/- mice. We found that muscle of Gaa -/- mice displayed altered levels of proteins including those with functions in the CLEAR signaling pathway, autophagy, cytoplasmic glycogen metabolism, calcium homeostasis, redox signaling, mitochondrial function, fatty acid transport, muscle contraction, cytoskeletal organization, phagosome maturation, and inflammation. Gene therapy with LV-GAAco resulted in partial correction of the muscle proteome, while gene therapy with LV-IGF2.GAAco resulted in a near-complete restoration to wild type levels without inducing extra proteomic changes, supporting clinical development of lentiviral gene therapy for Pompe disease. SIGNIFICANCE: Lysosomal glycogen accumulation is the primary cause of Pompe disease, and leads to a cascade of pathological events in cardiac and skeletal muscle and in the central nervous system. In this study, we identified the proteomic changes that are caused by Pompe disease in skeletal muscle of a mouse model. We showed that lentiviral gene therapy with LV-IGF2.GAAco nearly completely corrects disease-associated proteomic changes. This study supports the future clinical development of lentiviral gene therapy with LV-IGF2.GAAco as a new treatment option for Pompe disease.


Glycogen Storage Disease Type II , Animals , Mice , Genetic Therapy/methods , Glycogen/metabolism , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Glycogen Storage Disease Type II/pathology , Lentivirus/genetics , Lentivirus/metabolism , Lysosomes/metabolism , Mice, Knockout , Muscle, Skeletal/metabolism , Proteome/metabolism , Proteomics
4.
J Am Soc Nephrol ; 35(3): 321-334, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38073039

SIGNIFICANCE STATEMENT: There is an unmet need for biomarkers of disease progression in autosomal dominant polycystic kidney disease (ADPKD). This study investigated urinary extracellular vesicles (uEVs) as a source of such biomarkers. Proteomic analysis of uEVs identified matrix metalloproteinase 7 (MMP-7) as a biomarker predictive of rapid disease progression. In validation studies, MMP-7 was predictive in uEVs but not in whole urine, possibly because uEVs are primarily secreted by tubular epithelial cells. Indeed, single-nucleus RNA sequencing showed that MMP-7 was especially increased in proximal tubule and thick ascending limb cells, which were further characterized by a profibrotic phenotype. Together, these data suggest that MMP-7 is a biologically plausible and promising uEV biomarker for rapid disease progression in ADPKD. BACKGROUND: In ADPKD, there is an unmet need for early markers of rapid disease progression to facilitate counseling and selection for kidney-protective therapy. Our aim was to identify markers for rapid disease progression in uEVs. METHODS: Six paired case-control groups ( n =10-59/group) of cases with rapid disease progression and controls with stable disease were formed from two independent ADPKD cohorts, with matching by age, sex, total kidney volume, and genetic variant. Candidate uEV biomarkers were identified by mass spectrometry and further analyzed using immunoblotting and an ELISA. Single-nucleus RNA sequencing of healthy and ADPKD tissue was used to identify the cellular origin of the uEV biomarker. RESULTS: In the discovery proteomics experiments, the protein abundance of MMP-7 was significantly higher in uEVs of patients with rapid disease progression compared with stable disease. In the validation groups, a significant >2-fold increase in uEV-MMP-7 in patients with rapid disease progression was confirmed using immunoblotting. By contrast, no significant difference in MMP-7 was found in whole urine using ELISA. Compared with healthy kidney tissue, ADPKD tissue had significantly higher MMP-7 expression in proximal tubule and thick ascending limb cells with a profibrotic phenotype. CONCLUSIONS: Among patients with ADPKD, rapid disease progressors have higher uEV-associated MMP-7. Our findings also suggest that MMP-7 is a biologically plausible biomarker for more rapid disease progression.


Extracellular Vesicles , Polycystic Kidney, Autosomal Dominant , Humans , Biomarkers , Disease Progression , Matrix Metalloproteinase 7 , Polycystic Kidney, Autosomal Dominant/genetics , Proteomics
5.
Res Sq ; 2023 Oct 12.
Article En | MEDLINE | ID: mdl-37886519

Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we applied a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis showed that DDA1 is an integral component of the CRL4CSA complex. Functional analysis revealed that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.

6.
Hemasphere ; 7(10): e951, 2023 Oct.
Article En | MEDLINE | ID: mdl-37731707

It remains challenging in chronic lymphocytic leukemia (CLL) to distinguish between patients with favorable and unfavorable time-to-first treatment (TTFT). Additionally, the downstream protein correlates of well-known molecular features of CLL are not always clear. To address this, we selected 40 CLL patients with TTFT ≤24 months and compared their B cell intracellular protein expression with 40 age- and sex-matched CLL patients with TTFT >24 months using mass spectrometry. In total, 3268 proteins were quantified in the cohort. Immunoglobulin heavy-chain variable (IGHV) mutational status and trisomy 12 were most impactful on the CLL proteome. Comparing cases to controls, 5 proteins were significantly upregulated, whereas 3 proteins were significantly downregulated. Of these, only THEMIS2, a signaling protein acting downstream of the B cell receptor, was significantly associated with TTFT, independently of IGHV and TP53 mutational status (hazard ratio, 2.49 [95% confidence interval, 1.62-3.84]; P < 0.001). This association was validated on the mRNA and protein level by quantitative polymerase chain reaction and ELISA, respectively. Analysis of 2 independently generated RNA sequencing and mass spectrometry datasets confirmed the association between THEMIS2 expression and clinical outcome. In conclusion, we present a comprehensive characterization of the proteome of untreated CLL and identify THEMIS2 expression as a putative biomarker of TTFT.

7.
DNA Repair (Amst) ; 130: 103566, 2023 10.
Article En | MEDLINE | ID: mdl-37716192

Transcription-blocking lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which prevents DNA damage-induced cellular toxicity and maintains proper transcriptional processes. TC-NER is initiated by the stalling of RNA polymerase II (RNAPII), which triggers the assembly of TC-NER-specific proteins, namely CSB, CSA and UVSSA, which collectively control and drive TC-NER progression. Previous research has revealed molecular functions for these proteins, however, exact mechanisms governing the initiation and regulation of TC-NER, particularly at low UV doses have remained elusive, partly due to technical constraints. In this study, we employ knock-in cell lines designed to target the endogenous CSB gene locus with mClover, a GFP variant. Through live cell imaging, we uncover the intricate molecular dynamics of CSB in response to physiologically relevant UV doses. We showed that the DNA damage-induced association of CSB with chromatin is tightly regulated by the CSA-containing ubiquitin-ligase CRL complex (CRL4CSA). Combining the CSB-mClover knock-in cell line with SILAC-based GFP-mediated complex isolation and mass-spectrometry-based proteomics, revealed novel putative CSB interactors as well as discernible variations in complex composition during distinct stages of TC-NER progression. Our work not only provides molecular insight into TC-NER, but also illustrates the versatility of endogenously tagging fluorescent and affinity tags.


DNA Damage , DNA Repair , Cell Line , Chromatin , Mass Spectrometry
8.
Nucleic Acids Res ; 51(17): 9055-9074, 2023 09 22.
Article En | MEDLINE | ID: mdl-37470997

The SWI/SNF family of ATP-dependent chromatin remodeling complexes is implicated in multiple DNA damage response mechanisms and frequently mutated in cancer. The BAF, PBAF and ncBAF complexes are three major types of SWI/SNF complexes that are functionally distinguished by their exclusive subunits. Accumulating evidence suggests that double-strand breaks (DSBs) in transcriptionally active DNA are preferentially repaired by a dedicated homologous recombination pathway. We show that different BAF, PBAF and ncBAF subunits promote homologous recombination and are rapidly recruited to DSBs in a transcription-dependent manner. The PBAF and ncBAF complexes promote RNA polymerase II eviction near DNA damage to rapidly initiate transcriptional silencing, while the BAF complex helps to maintain this transcriptional silencing. Furthermore, ARID1A-containing BAF complexes promote RNaseH1 and RAD52 recruitment to facilitate R-loop resolution and DNA repair. Our results highlight how multiple SWI/SNF complexes perform different functions to enable DNA repair in the context of actively transcribed genes.


Chromosomal Proteins, Non-Histone , R-Loop Structures , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA , DNA Repair/genetics , Homologous Recombination/genetics , Humans
9.
Mol Cell Proteomics ; 22(6): 100548, 2023 Jun.
Article En | MEDLINE | ID: mdl-37059365

Ubiquitination has crucial roles in many cellular processes, and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using stable isotope labeling by amino acids in cell culture-based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control, is dependent on UBE2D3. We show by Targets of Ubiquitin Ligases Identified by Proteomics 2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that the catalytic activity of UBE2D3 is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control. Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.


Proteome , Ubiquitin , Proteome/metabolism , Ubiquitination , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Sci Transl Med ; 15(688): eadd4248, 2023 03 22.
Article En | MEDLINE | ID: mdl-36947592

Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.


Cardiomyopathies , Plakophilins , Humans , Mice , Animals , Infant , Proteolysis , Plakophilins/genetics , Plakophilins/metabolism , Myocytes, Cardiac/metabolism , Mutation/genetics , Cardiomyopathies/genetics
11.
Biomater Adv ; 146: 213289, 2023 Mar.
Article En | MEDLINE | ID: mdl-36724550

Tumor initiation and progression are critically dependent on interaction of cancer cells with their cellular and extracellular microenvironment. Alterations in the composition, integrity, and mechanical properties of the extracellular matrix (ECM) dictate tumor processes including cell proliferation, migration, and invasion. Also in primary liver cancer, consisting of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the dysregulation of the extracellular environment by liver fibrosis and tumor desmoplasia is pertinent. Yet, the exact changes occurring in liver cancer ECM remain uncharacterized and underlying tumor-promoting mechanisms remain largely unknown. Herein, an integrative molecular and mechanical approach is used to extensively characterize the ECM of HCC and CCA tumors by utilizing an optimized decellularization technique. We identified a myriad of proteins in both tumor and adjacent liver tissue, uncovering distinct malignancy-related ECM signatures. The resolution of this approach unveiled additional ECM-related proteins compared to large liver cancer transcriptomic datasets. The differences in ECM protein composition resulted in divergent mechanical properties on a macro- and micro-scale that are tumor-type specific. Furthermore, the decellularized tumor ECM was employed to create a tumor-specific hydrogel that supports patient-derived tumor organoids, which provides a new avenue for personalized medicine applications. Taken together, this study contributes to a better understanding of alterations to composition, stiffness, and collagen alignment of the tumor ECM that occur during liver cancer development.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Proteomics , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Extracellular Matrix/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Tumor Microenvironment/genetics
12.
Hum Genet ; 142(3): 379-397, 2023 Mar.
Article En | MEDLINE | ID: mdl-36538041

CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.


Actins , Zebrafish , Animals , Humans , DNA-Binding Proteins/metabolism , Endosomes/genetics , Endosomes/metabolism , HEK293 Cells , Lectins, C-Type/genetics , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Nuclear Proteins/metabolism , Protein Transport , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
13.
Hum Mol Genet ; 32(9): 1497-1510, 2023 04 20.
Article En | MEDLINE | ID: mdl-36579832

TBR1 is a neuron-specific transcription factor involved in brain development and implicated in a neurodevelopmental disorder (NDD) combining features of autism spectrum disorder (ASD), intellectual disability (ID) and speech delay. TBR1 has been previously shown to interact with a small number of transcription factors and co-factors also involved in NDDs (including CASK, FOXP1/2/4 and BCL11A), suggesting that the wider TBR1 interactome may have a significant bearing on normal and abnormal brain development. Here, we have identified approximately 250 putative TBR1-interaction partners by affinity purification coupled to mass spectrometry. As well as known TBR1-interactors such as CASK, the identified partners include transcription factors and chromatin modifiers, along with ASD- and ID-related proteins. Five interaction candidates were independently validated using bioluminescence resonance energy transfer assays. We went on to test the interaction of these candidates with TBR1 protein variants implicated in cases of NDD. The assays uncovered disturbed interactions for NDD-associated variants and identified two distinct protein-binding domains of TBR1 that have essential roles in protein-protein interaction.


Neurodevelopmental Disorders , T-Box Domain Proteins , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Intellectual Disability/genetics , Intellectual Disability/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Protein Binding/genetics , Protein Binding/physiology , Proteins/genetics , Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
J Inherit Metab Dis ; 46(1): 101-115, 2023 01.
Article En | MEDLINE | ID: mdl-36111639

Pompe disease is an inherited metabolic myopathy caused by deficiency of acid alpha-glucosidase (GAA), resulting in lysosomal glycogen accumulation. Residual GAA enzyme activity affects disease onset and severity, although other factors, including dysregulation of cytoplasmic glycogen metabolism, are suspected to modulate the disease course. In this study, performed in mice and patient biopsies, we found elevated protein levels of enzymes involved in glucose uptake and cytoplasmic glycogen synthesis in skeletal muscle from mice with Pompe disease, including glycogenin (GYG1), glycogen synthase (GYS1), glucose transporter 4 (GLUT4), glycogen branching enzyme 1 (GBE1), and UDP-glucose pyrophosphorylase (UGP2). Expression levels were elevated before the loss of muscle mass and function. For first time, quantitative mass spectrometry in skeletal muscle biopsies from five adult patients with Pompe disease showed increased expression of GBE1 protein relative to healthy controls at the group level. Paired analysis of individual patients who responded well to treatment with enzyme replacement therapy (ERT) showed reduction of GYS1, GYG1, and GBE1 in all patients after start of ERT compared to baseline. These results indicate that metabolic changes precede muscle wasting in Pompe disease, and imply a positive feedforward loop in Pompe disease, in which lysosomal glycogen accumulation promotes cytoplasmic glycogen synthesis and glucose uptake, resulting in aggravation of the disease phenotype.


Glycogen Storage Disease Type II , Mice , Animals , Glycogen Storage Disease Type II/genetics , Glycogen/metabolism , alpha-Glucosidases/genetics , Muscle, Skeletal/pathology , Lysosomes/metabolism , Glucose/metabolism
15.
Sci Adv ; 8(44): eabq7598, 2022 Nov 04.
Article En | MEDLINE | ID: mdl-36332031

Ubiquitin-specific protease 7 (USP7) has been implicated in cancer progression and neurodevelopment. However, its molecular targets remain poorly characterized. We combined quantitative proteomics, transcriptomics, and epigenomics to define the core USP7 network. Our multi-omics analysis reveals USP7 as a control hub that links genome regulation, tumor suppression, and histone H2A ubiquitylation (H2AK119ub1) by noncanonical Polycomb-repressive complexes (ncPRC1s). USP7 strongly stabilizes ncPRC1.6 and, to a lesser extent, ncPRC1.1. Moreover, USP7 represses expression of AUTS2, which suppresses H2A ubiquitylation by ncPRC1.3/5. Collectively, these USP7 activities promote the genomic deposition of H2AK119ub1 by ncPRC1, especially at transcriptionally repressed loci. Notably, USP7-dependent changes in H2AK119ub1 levels are uncoupled from H3K27me3. Even complete loss of the PRC1 catalytic core and H2AK119ub1 has only a limited effect on H3K27me3. Besides defining the USP7 regulome, our results reveal that H2AK119ub1 dosage is largely disconnected from H3K27me3.

16.
JHEP Rep ; 4(11): 100576, 2022 Nov.
Article En | MEDLINE | ID: mdl-36185575

Background & Aims: Antigen-specific immunotherapy is a promising strategy to treat HBV infection and hepatocellular carcinoma (HCC). To facilitate killing of malignant and/or infected hepatocytes, it is vital to know which T cell targets are presented by human leucocyte antigen (HLA)-I complexes on patient-derived hepatocytes. Here, we aimed to reveal the hepatocyte-specific HLA-I peptidome with emphasis on peptides derived from HBV proteins and tumour-associated antigens (TAA) to guide development of antigen-specific immunotherapy. Methods: Primary human hepatocytes were isolated with high purity from (HBV-infected) non-tumour and HCC tissues using a newly designed perfusion-free procedure. Hepatocyte-derived HLA-bound peptides were identified by unbiased mass spectrometry (MS), after which source proteins were subjected to Gene Ontology and pathway analysis. HBV antigen and TAA-derived HLA peptides were searched for using targeted MS, and a selection of peptides was tested for immunogenicity. Results: Using unbiased data-dependent acquisition (DDA), we acquired a high-quality HLA-I peptidome of 2 × 105 peptides that contained 8 HBV-derived peptides and 14 peptides from 8 known HCC-associated TAA that were exclusive to tumours. Of these, 3 HBV- and 12 TAA-derived HLA peptides were detected by targeted MS in the sample they were originally identified in by DDA. Moreover, 2 HBV- and 2 TAA-derived HLA peptides were detected in samples in which no identification was made using unbiased MS. Finally, immunogenicity was demonstrated for 5 HBV-derived and 3 TAA-derived peptides. Conclusions: We present a first HLA-I immunopeptidome of isolated primary human hepatocytes, devoid of immune cells. Identified HBV-derived and TAA-derived peptides directly aid development of antigen-specific immunotherapy for chronic HBV infection and HCC. The described methodology can also be applied to personalise immunotherapeutic treatment of liver diseases in general. Lay summary: Immunotherapy that aims to induce immune responses against a virus or tumour is a promising novel treatment option to treat chronic HBV infection and liver cancer. For the design of successful therapy, it is essential to know which fragments (i.e. peptides) of virus-derived and tumour-specific proteins are presented to the T cells of the immune system by diseased liver cells and are thus good targets for immunotherapy. Here, we have isolated liver cells from patients who have chronic HBV infection and/or liver cancer, analysed what peptides are presented by these cells, and assessed which peptides are able to drive immune responses.

17.
Transl Psychiatry ; 12(1): 275, 2022 07 11.
Article En | MEDLINE | ID: mdl-35821008

We investigated for the first time the proteomic profiles both in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of major depressive disorder (MDD) and bipolar disorder (BD) patients. Cryostat sections of DLPFC and ACC of MDD and BD patients with their respective well-matched controls were used for study. Proteins were quantified by tandem mass tag and high-performance liquid chromatography-mass spectrometry system. Gene Ontology terms and functional cluster alteration were analyzed through bioinformatic analysis. Over 3000 proteins were accurately quantified, with more than 100 protein expressions identified as significantly changed in these two brain areas of MDD and BD patients as compared to their respective controls. These include OGDH, SDHA and COX5B in the DLPFC in MDD patients; PFN1, HSP90AA1 and PDCD6IP in the ACC of MDD patients; DBN1, DBNL and MYH9 in the DLPFC in BD patients. Impressively, depending on brain area and distinct diseases, the most notable change we found in the DLPFC of MDD was 'suppressed energy metabolism'; in the ACC of MDD it was 'suppressed tissue remodeling and suppressed immune response'; and in the DLPFC of BD it was differentiated 'suppressed tissue remodeling and suppressed neuronal projection'. In summary, there are distinct proteomic changes in different brain areas of the same mood disorder, and in the same brain area between MDD and BD patients, which strengthens the distinct pathogeneses and thus treatment targets.


Bipolar Disorder , Depressive Disorder, Major , Aged , Gyrus Cinguli , Humans , Magnetic Resonance Imaging/methods , Profilins/metabolism , Proteomics
18.
Front Pediatr ; 10: 881287, 2022.
Article En | MEDLINE | ID: mdl-35615634

Congenital diaphragmatic hernia is a structural birth defect of the diaphragm, with lung hypoplasia and persistent pulmonary hypertension. Aside from vascular defects, the lungs show a disturbed balance of differentiated airway epithelial cells. The Sry related HMG box protein SOX2 is an important transcription factor for proper differentiation of the lung epithelium. The transcriptional activity of SOX2 depends on interaction with other proteins and the identification of SOX2-associating factors may reveal important complexes involved in the disturbed differentiation in CDH. To identify SOX2-associating proteins, we purified SOX2 complexes from embryonic mouse lungs at 18.5 days of gestation. Mass spectrometry analysis of SOX2-associated proteins identified several potential candidates, among which were the Chromodomain Helicase DNA binding protein 4 (CHD4), Cut-Like Homeobox1 (CUX1), and the Forkhead box proteins FOXP2 and FOXP4. We analyzed the expression patterns of FOXP2, FOXP4, CHD4, and CUX1 in lung during development and showed co-localization with SOX2. Co-immunoprecipitations validated the interactions of these four transcription factors with SOX2, and large-scale chromatin immunoprecipitation (ChIP) data indicated that SOX2 and CHD4 bound to unique sites in the genome, but also co-occupied identical regions, suggesting that these complexes could be involved in co-regulation of genes involved in the respiratory system.

19.
J Proteomics ; 262: 104592, 2022 06 30.
Article En | MEDLINE | ID: mdl-35489684

The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14 (RPN11), USP14 and UCH37 (UCHL5). However, the functional roles and specificities of these proteasomal DUBs remain elusive. To reveal the specificities of proteasome associated DUBs, we used SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. We observed distinct effects on the global ubiquitinome upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggested less functional redundancy than previously anticipated. We also investigated whether the small molecule inhibitor b-AP15 has the potential to specifically target USP14 and UCH37 by comparing treatment of wild-type versus USP14/UCH37 double-knockout cells with this drug. Strikingly, broad and severe off-target effects were observed, questioning the alleged specificity of this inhibitor. In conclusion, this work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds. SIGNIFICANCE: Introduction: The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14/RPN11, USP14 and UCH37/UCHL5. However, the functional roles and specificities of these proteasomal DUBs remains elusive. MATERIALS & METHODS: We have applied a SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. Also, we have studied the function of the small molecule inhibitor b-AP15, which has the potential to specifically target USP14 and UCH37. RESULTS: We report distinct effects on the ubiquitinome and the ability of the proteasome to clear proteins upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggests less redundancy than previously anticipated. In addition, broad and severe off-target effects were observed for b-AP15, questioning the alleged specificity of this inhibitor. CONCLUSIONS: This work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds.


Proteasome Endopeptidase Complex , Trans-Activators , Ubiquitin Thiolesterase , Humans , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Trans-Activators/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitins/metabolism
20.
J Proteomics ; 262: 104593, 2022 06 30.
Article En | MEDLINE | ID: mdl-35483230
...