Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(1): 435-459, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36534051

RESUMEN

Microtubule (MT)-stabilizing 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) hold promise as candidate therapeutics for Alzheimer's disease (AD) and other neurodegenerative conditions. However, depending on the choice of substituents around the TPD core, these compounds can elicit markedly different cellular phenotypes that likely arise from the interaction of TPD congeners with either one or two spatially distinct binding sites within tubulin heterodimers (i.e., the seventh site and the vinca site). In the present study, we report the design, synthesis, and evaluation of a series of new TPD congeners, as well as matched molecular pair analyses and computational studies, that further elucidate the structure-activity relationships of MT-active TPDs. These studies led to the identification of novel MT-normalizing TPD candidates that exhibit favorable ADME-PK, including brain penetration and oral bioavailability, as well as brain pharmacodynamic activity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Pirimidinas/química , Microtúbulos/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Tubulina (Proteína)/metabolismo , Relación Estructura-Actividad
2.
Eur J Med Chem ; 229: 114054, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34959172

RESUMEN

The human kinome plays a crucial role in several pathways. Its dysregulation has been linked to diverse central nervous system (CNS)-related disorders with a drastic impact on the aging population. Among them, tauopathies, such as Alzheimer's Disease (AD) and Frontotemporal Lobar degeneration (FTLD-tau), are neurodegenerative disorders pathologically defined by the presence of hyperphosphorylated tau-positive intracellular inclusions known as neurofibrillary tangles (NFTs). Compelling evidence has reported the great potential of the simultaneous modulation of multiple protein kinases (PKs) involved in abnormal tau phosphorylation through a concerted pharmacological approach to achieve a superior therapeutic effect relative to classic "one target, one drug" approaches. Here, we report on the identification and characterization of ARN25068 (4), a low nanomolar and well-balanced dual GSK-3ß and FYN inhibitor, which also shows inhibitory activity against DYRK1A, an emerging target in AD and tauopathies. Computational and X-Ray studies highlight compound 4's typical H-bonding pattern of ATP-competitive inhibitors at the binding sites of all three PKs. In a tau phosphorylation assay on Tau0N4R-TM-tGFP U2OS cell line, 4 reduces the extent of tau phosphorylation, promoting tau-stabilized microtubule bundles. In conclusion, this compound emerges as a promising prototype for further SAR explorations to develop potent and well-balanced triple GSK-3ß/FYN/DYRK1A inhibitors to tackle tau hyperphosphorylation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fármacos Neuroprotectores/síntesis química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Tauopatías/tratamiento farmacológico , Sitios de Unión , Evaluación Preclínica de Medicamentos , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Ovillos Neurofibrilares/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Proteínas tau/metabolismo , Quinasas DyrK
3.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445804

RESUMEN

Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK-3ß, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK-3ß, FYN, and DYRK1A inhibitors as disease-modifying agents. In this review, we described both structural and functional aspects of GSK-3ß, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood-brain barrier (BBB) permeability and drug-like properties.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Transducción de Señal/fisiología , Animales , Humanos
4.
Org Lett ; 20(23): 7699-7702, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30422665

RESUMEN

A unified protocol for the construction of 3-(2-bromoethyl)benzofurans and 2-(benzofuran-3-yl)ethylamines from bis[(trimethylsilyl)oxy]cyclobutene has been developed. This mild and facile strategy was applied for the synthesis of a series of 5-HT serotonin receptor agonists, underlining its potential for the syntheses of bioactive compounds and natural products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...