Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
PLoS One ; 19(4): e0301331, 2024.
Article En | MEDLINE | ID: mdl-38630769

Fostering equity in undergraduate science, technology, engineering, and mathematics (STEM) programs can be accomplished by incorporating learner-centered pedagogies, resulting in the closing of opportunity gaps (defined here as the difference in grades earned by minoritized and non-minoritized students). We assessed STEM courses that exhibit small and large opportunity gaps at a minority-serving, research-intensive university, and evaluated the degree to which their syllabi are learner-centered, according to a previously validated rubric. We specifically chose syllabi as they are often the first interaction students have with a course, establish expectations for course policies and practices, and serve as a proxy for the course environment. We found STEM courses with more learner-centered syllabi had smaller opportunity gaps. The syllabus rubric factor that most correlated with smaller gaps was Power and Control, which reflects Student's Role, Outside Resources, and Syllabus Focus. This work highlights the importance of course syllabi as a tool for instructors to create more inclusive classroom environments.


Curriculum , Engineering , Humans , Engineering/education , Technology/education , Students , Mathematics
2.
Int J STEM Educ ; 11(1): 14, 2024.
Article En | MEDLINE | ID: mdl-38404757

Background: Large introductory lecture courses are frequently post-secondary students' first formal interaction with science, technology, engineering, and mathematics (STEM) disciplines. Grade outcomes in these courses are often disparate across student populations, which, in turn, has implications for student retention. This study positions such disparities as a manifestation of systemic inequities along the dimensions of sex, race/ethnicity, income, and first-generation status and investigates the extent to which they are similar across peer institutions. Results: We examined grade outcomes in a selected set of early STEM courses across six large, public, research-intensive universities in the United States over ten years. In this sample of more than 200,000 STEM course enrollments, we find that course grade benefits increase significantly with the number of systemic advantages students possess at all six institutions. The observed trends in academic outcomes versus advantage are strikingly similar across universities despite the fact that we did not control for differences in grading practices, contexts, and instructor and student populations. The findings are concerning given that these courses are often students' first post-secondary STEM experiences. Conclusions: STEM course grades are typically lower than those in other disciplines; students taking them often pay grade penalties. The systemic advantages some student groups experience are correlated with significant reductions in these grade penalties at all six institutions. The consistency of these findings across institutions and courses supports the claim that inequities in STEM education are a systemic problem, driven by factors that go beyond specific courses or individual institutions. Our work provides a basis for the exploration of contexts where inequities are exacerbated or reduced and can be used to advocate for structural change within STEM education. To cultivate more equitable learning environments, we must reckon with how pervasive structural barriers in STEM courses negatively shape the experiences of marginalized students. Supplementary Information: The online version contains supplementary material available at 10.1186/s40594-024-00474-7.

4.
Int J STEM Educ ; 9(1): 49, 2022.
Article En | MEDLINE | ID: mdl-35915654

Background: The University of California system has a novel tenure-track education-focused faculty position called Lecturer with Security of Employment (working titles: Teaching Professor or Professor of Teaching). We focus on the potential difference in implementation of active-learning strategies by faculty type, including tenure-track education-focused faculty, tenure-track research-focused faculty, and non-tenure-track lecturers. In addition, we consider other instructor characteristics (faculty rank, years of teaching, and gender) and classroom characteristics (campus, discipline, and class size). We use a robust clustering algorithm to determine the number of clusters, identify instructors using active learning, and to understand the instructor and classroom characteristics in relation to the adoption of active-learning strategies. Results: We observed 125 science, technology, engineering, and mathematics (STEM) undergraduate courses at three University of California campuses using the Classroom Observation Protocol for Undergraduate STEM to examine active-learning strategies implemented in the classroom. Tenure-track education-focused faculty are more likely to teach with active-learning strategies compared to tenure-track research-focused faculty. Instructor and classroom characteristics that are also related to active learning include campus, discipline, and class size. The campus with initiatives and programs to support undergraduate STEM education is more likely to have instructors who adopt active-learning strategies. There is no difference in instructors in the Biological Sciences, Engineering, or Information and Computer Sciences disciplines who teach actively. However, instructors in the Physical Sciences are less likely to teach actively. Smaller class sizes also tend to have instructors who teach more actively. Conclusions: The novel tenure-track education-focused faculty position within the University of California system represents a formal structure that results in higher adoption of active-learning strategies in undergraduate STEM education. Campus context and evolving expectations of the position (faculty rank) contribute to the symbols related to learning and teaching that correlate with differential implementation of active learning. Supplementary Information: The online version contains supplementary material available at 10.1186/s40594-022-00365-9.

5.
CBE Life Sci Educ ; 21(2): ar24, 2022 06.
Article En | MEDLINE | ID: mdl-35544204

Many science, technology, engineering, and math (STEM) community college students do not complete their degree, and these students are more likely to be women or in historically excluded racial or ethnic groups. In introductory courses, low grades can trigger this exodus. Implementation of high-impact study strategies could lead to increased academic performance and retention. The examination of study strategies rarely occurs at the community college level, even though community colleges educate approximately half of all STEM students in the United States who earn a bachelor's degree. To fill this research gap, we studied students in two biology courses at a Hispanic-serving community college. Students were asked their most commonly used study strategies at the start and end of the semester. They were given a presentation on study skills toward the beginning of the semester and asked to self-assess their study strategies for each exam. We observed a significantly higher course grade for students who reported spacing their studying and creating drawings when controlling for demographic factors, and usage of these strategies increased by the end of the semester. We conclude that high-impact study strategies can be taught to students in community college biology courses and result in higher course performance.


Curriculum , Students , Biology/education , Engineering/education , Female , Humans , Male , United States , Universities
6.
PLoS One ; 17(4): e0264059, 2022.
Article En | MEDLINE | ID: mdl-35395005

It is well established that there is a national problem surrounding the equitable participation in and completion of science, technology, engineering, and mathematics (STEM) higher education programs. Persons excluded because of their ethnicity or race (PEERs) experience lower course performance, major retention, sense of belonging, and degree completion. It is unclear though how pervasive these issues are across an institution, from the individual instructor, course, and discipline perspectives. Examining over six years of institutional data from a large-enrollment, research-intensive, minority-serving university, we present an analysis of racial opportunity gaps between PEERs and non-PEERs to identify the consistency of these issues. From this analysis, we find that there is considerable variability as to whether a given course section taught by a single instructor does or does not exhibit opportunity gaps, although encouragingly we did identify exemplar instructors, course-instructor pairs, courses, and departments that consistently had no significant gaps observed. We also identified significant variation across course-instructor pairs within a department, and found that certain STEM disciplines were much more likely to have courses that exhibited opportunity gaps relative to others. Across nearly all disciplines though, it is clear that these gaps are more pervasive in the lower division curriculum. This work highlights a means to identify the extent of inequity in STEM success across a university by leveraging institutional data. These findings also lay the groundwork for future studies that will enable the intentional design of STEM education reform by leveraging beneficial practices used by instructors and departments assigning equitable grades.


Engineering , Students , Engineering/education , Humans , Mathematics , Technology/education , Universities
7.
Article En | MEDLINE | ID: mdl-33953806

Because of the COVID-19 pandemic in March 2020, higher education institutions had to pivot rapidly to online remote learning. Many educators were concerned that the disparate impact of this crisis would exacerbate inequities in learning outcomes and student learning experiences, especially for students from minoritized backgrounds. We examined course grades and student perceptions of their learning experiences in fall (face-to-face) and spring (fully remote) quarters in an introductory biology course series at a public research university. Contrary to our hypothesis, we found that student course grades increased overall during remote learning, and equity gaps in course grades were mitigated for minoritized students. We hypothesize that instructors may have changed their grading practices to compensate for challenges in remote learning in crisis. However, spring students reported significant decreases in the amount of peer negotiation and social support, critical components of active learning. These findings suggest that remote teaching in crisis may have negatively affected student learning environments in ways that may not have been captured by grading practices.

8.
CBE Life Sci Educ ; 20(1): ar3, 2021 03.
Article En | MEDLINE | ID: mdl-33444101

The Classroom Observation Protocol for Undergraduate STEM (COPUS) provides descriptive feedback to instructors by capturing student and instructor behaviors occurring in the classroom. Due to the increasing prevalence of COPUS data collection, it is important to recognize how researchers determine whether groups of courses or instructors have unique classroom characteristics. One approach uses cluster analysis, highlighted by a recently developed tool, the COPUS Analyzer, that enables the characterization of COPUS data into one of seven clusters representing three groups of instructional styles (didactic, interactive, and student centered). Here, we examine a novel 250 course data set and present evidence that a predictive cluster analysis tool may not be appropriate for analyzing COPUS data. We perform a de novo cluster analysis and compare results with the COPUS Analyzer output and identify several contrasting outcomes regarding course characterizations. Additionally, we present two ensemble clustering algorithms: 1) k-means and 2) partitioning around medoids. Both ensemble algorithms categorize our classroom observation data into one of two clusters: traditional lecture or active learning. Finally, we discuss implications of these findings for education research studies that leverage COPUS data.


Problem-Based Learning , Students , Cluster Analysis , Data Collection , Humans
9.
Article En | MEDLINE | ID: mdl-32431776

Course-based undergraduate research experiences (CUREs) are an effective way to introduce students to contemporary scientific research. Research experiences have been shown to promote critical thinking, improve understanding and proper use of the scientific method, and help students learn practical skills including writing and oral communication. We aimed to improve scientific training by engaging students enrolled in an upper division elective course in a human microbiome CURE. The "Fiber Force" course is aimed at studying the effect of a wholesome high-fiber diet (40 to 50 g/day for two weeks) on the students' gut microbiomes. Enrolled students participated in a noninvasive diet intervention, designed health surveys, tested hypotheses on the effect of a diet intervention on the gut microbiome, and analyzed their own samples (as anonymized aggregates). The course involved learning laboratory techniques (e.g., DNA extraction, PCR, and 16S sequencing) and the incorporation of computational techniques to analyze microbiome data with QIIME2 and within the R software environment. In addition, the learning objectives focused on effective student performance in writing, data analysis, and oral communication. Enrolled students showed high performance grades on writing, data analysis and oral communication assignments. Pre- and post-course surveys indicate that the students found the experience favorable, increased their interest in science, and heightened awareness of their diet habits. Fiber Force constitutes a validated case of a research experience on microbiology with the capacity to improve research training and promote healthy dietary habits.

10.
Data Brief ; 29: 105320, 2020 Apr.
Article En | MEDLINE | ID: mdl-32181291

This data article includes information on institutional data at a large public research university in Southern California. In particular, data on undergraduate student enrollments in online and face-to-face courses during summer terms from 2014 to 2017 cumulating in 72,441 course enrollments from 23,610 undergraduate students in 433 courses is provided. This data includes additional information on the statistical models examining factors influencing student enrollment by course modality and the associations of course modality with course grades. This includes descriptive data and data derived from multi-level logistic regression analyses and multi-way fixed effects linear regression analyses. This data article is associated with the article "Effects of course modality in summer session: Enrollment patterns and student performance in face-to-face and online classes" [1].

11.
CBE Life Sci Educ ; 18(3): ar31, 2019 09.
Article En | MEDLINE | ID: mdl-31397654

College science courses aim to teach students both disciplinary knowledge and scientific literacy skills. Several instruments have been developed to assess students' scientific literacy skills, but few studies have reported how demographic differences may play a role. The goal of this study was to determine whether demographic factors differentially impact students' scientific literacy skills. We assessed more than 700 students using the Test of Scientific Literacy Skills (TOSLS), a validated instrument developed to assess scientific literacy in college science courses. Interestingly, we found that Scholastic Aptitude Test (SAT) reading score was the strongest predictor of TOSLS performance, suggesting that fundamental literacy (reading comprehension) is a critical component of scientific literacy skills. Additionally, we found significant differences in raw scientific literacy skills on the basis of ethnicity (underrepresented minority [URM] vs. non-URM), major (science, technology, engineering, and mathematics [STEM] vs. non-STEM), year of college (e.g., senior vs. freshman), grade point average (GPA), and SAT math scores. However, when using multivariate regression models, we found no difference based on ethnicity. These data suggest that students' aptitude and level of training (based on GPA, SAT scores, STEM or non-STEM major, and year of college) are significantly correlated with scientific literacy skills and thus could be used as predictors for student success in courses that assess scientific literacy skills.


Literacy , Science/education , Test Taking Skills , Aptitude , Aptitude Tests , Educational Measurement , Female , Humans , Linear Models , Male , Students , Universities
12.
Article En | MEDLINE | ID: mdl-31316689

Quantitative data analysis skills are basic competencies students in a STEM field should master. In this article, we describe a classroom activity using isolated figures from papers as a simple exercise to practice data analysis skills. We call this approach Just Figures. With this technique, instructors find figures from primary papers that address key concepts related to several of their course learning objectives. These figures are assigned as homework prior to class discussion. In class, instructors teach the lesson and include a 10- to 20-minute discussion of the figures assigned. Frequent and repeated discussion of paper figures during class increased students' confidence in reading and analyzing data. The Just Figures approach also increased student accuracy when interpreting data. After six weeks of Just Figures practice, students scored, on average, three points higher on a 20-point data analysis assessment instrument than they had done before the Just Figures exercises. In addition, a course in which students consistently practiced Just Figures performed just as well on the data analysis assessment instrument and on a class exam dedicated to paper reading compared with courses where students practiced reading three entire papers. The Just Figures method is easy to implement and can effectively improve student data analysis skills in microbiology classrooms.

...