Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
MAbs ; 15(1): 2151075, 2023.
Article En | MEDLINE | ID: mdl-36519228

In this study, we report the isomerization of an aspartic acid residue in the complementarity-determining region (CDR) of crizanlizumab as a major degradation pathway. The succinimide intermediate and iso-aspartic acid degradation products were successfully isolated by ion exchange chromatography for characterization. The isomerization site was identified at a DG motif in the CDR by peptide mapping. The biological characterization of the isolated variants showed that the succinimide variant exhibited a loss in target binding and biological activity compared to the aspartic acid and iso-aspartic acid variants of the molecule. The influence of pH on this isomerization reaction was investigated using capillary zone electrophoresis. Below pH 6.3, the succinimide formation was predominant, whereas at pH values above 6.3, iso-aspartic acid was formed and the initial amounts of succinimide dropped to levels even lower than those observed in the starting material. Importantly, while the succinimide accumulated at long-term storage conditions of 2 to 8°C at pH values below 6.3, a complete hydrolysis of succinimide was observed at physiological conditions (pH 7.4, 37°C), resulting in full recovery of the biological activity. In this study, we demonstrate that the critical quality attribute succinimide with reduced potency has little or no impact on the efficacy of crizanlizumab due to the full recovery of the biological activity within a few hours under physiological conditions.


Aspartic Acid , Succinimides , Aspartic Acid/chemistry , Isomerism , Succinimides/analysis , Succinimides/chemistry , Complementarity Determining Regions/chemistry , Hydrogen-Ion Concentration
2.
Anal Chem ; 91(14): 8845-8852, 2019 07 16.
Article En | MEDLINE | ID: mdl-31187983

Characterization and monitoring of post-translational modifications (PTMs) are key analytical requirements during the development of biologics. Top and middle-down (MD) approaches aim at capturing a direct snapshot of all proteoforms with their combinatorial distribution. However, classical MD data analysis is predominantly limited to the interpretation of terminal ion series and PTMs matched by mass. In this study, time-resolved deconvolution (TRD) maps were produced to detect variants and impurities in Fd, Fc/2, and LC subunits of an IgG1 consistently across multiple samples. Classical MD analysis retrieved terminal ions, suggesting a deamidation at a NN motif for a LC+1 Da species, and inconclusive information for a LC+40 Da species. Additionally, we performed differential analysis of all MS2 ions across unmodified and variant subunit spectra to focus data analysis on spectral differences and reveal diagnostic ions (present, absent, enriched, or depleted ions) before fragment assignment. This sensitive methodology was able to detect diagnostic ions in a chimeric spectrum pointing at a proline-to-histidine sequence variant (+40 Da) missed by classical MD analysis. This methodology was pivotal to unravel relevant terminal ions and internal fragments N-terminal to proline as diagnostic ions to confirm the deamidation site. Moreover, different cleavage propensities were revealed at the deamidated DN site compared to the native NN motif for terminal and internal fragments, which may be tracked as a diagnostic behavior. Differential analysis may refine the detection of novel diagnostic ions and leverage the sequence information on internal fragments for the characterization of product-related variants and impurities by MD mass spectrometry.


Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Amides/analysis , Amino Acid Sequence , Humans , Ions/analysis , Protein Processing, Post-Translational , Tandem Mass Spectrometry/methods
3.
MAbs ; 9(8): 1337-1348, 2017.
Article En | MEDLINE | ID: mdl-28846476

Patent expiration of first-generation biologics and the high cost of innovative biologics are 2 drivers for the development of biosimilar products. There are, however, technical challenges to the production of exact copies of such large molecules. In this study, we performed a head-to-head comparison between the originator anti-VEGF-A Fab product LUCENTIS® (ranibizumab) and an intended copy product using an integrated analytical approach. While no differences could be observed using size-exclusion chromatography, capillary electrophoresis-sodium dodecyl sulfate and potency assays, different acidic peaks were identified with cation ion exchange chromatography and capillary zone electrophoresis. Further investigation of the intact Fab, subunits and primary sequence with mass spectrometry demonstrated the presence of a modified light chain variant in the intended copy product batches. This variant was characterized with a mass increase of 27.01 Da compared to the originator sequence and its abundance was estimated in the range of 6-9% of the intended copy product light chain. MS/MS spectra interrogation confirmed that this modification relates to a serine to asparagine sequence variant found in the intended copy product light chain. We demonstrated that the integration of high-resolution and sensitive orthogonal technologies was beneficial to assess the similarity of an originator and an intended copy product.


Asparagine/chemistry , Biosimilar Pharmaceuticals/chemistry , Ranibizumab/chemistry , Serine/chemistry , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Asparagine/genetics , Asparagine/immunology , Chromatography, Liquid/methods , Genetic Variation/immunology , Humans , Ranibizumab/genetics , Ranibizumab/immunology , Serine/genetics , Serine/immunology
4.
MAbs ; 9(5): 820-830, 2017 07.
Article En | MEDLINE | ID: mdl-28379786

Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner.


Antibodies, Monoclonal/analysis , Mass Spectrometry/methods , Humans , Recombinant Proteins/analysis
5.
Article En | MEDLINE | ID: mdl-24631807

Isomerization of aspartic acid residues is one of the major causes of chemical degradation during the shelf life of biological pharmaceuticals. Monoclonal antibody biopharmaceuticals are typically stored at mildly acidic pH conditions, which can lead to the isomerization reaction. The mechanism of this non-enzymatic chemical reaction has been studied in great detail. However, the identification and quantification of the isomerization sites in a given protein still remains a challenge. We developed an ion-pair reversed-phase HPLC method for the separation of an intact monoclonal antibody variant containing a single isoaspartic acid residue from its native counterpart. We identified and characterized the isomerization site using ion-pair reversed-phase HPLC mass spectrometry methods of the reduced and alkylated antibody and the enzymatically cleaved antibody. Lys-C followed by Asp-N digestion of the antibody was used for the identification of the isomerization site. Electron transfer dissociation (ETD) mass spectrometry was used to confirm the isomerization site at a DY motif at an aspartic acid residue in the CDR-H3 region of the antibody. Tyrosine at the C-terminus of an aspartic acid residue is typically not regarded as a hot spot for isomerization. Our findings suggest that it is not possible to predict isomerization sites in proteins with confidence and all aspartic acid residues located in the CDR regions of antibodies must be considered as potential isomerization site due to the solvent exposure or the flexibility of these regions of the molecule. Additionally, the effect of the pH on the isomerization rate was evaluated using the ion-pair reversed-phase HPLC method, showing that at a lower pH the isomerization rate is faster. Storage at 25°C for 6 months resulted in an increase of the amount of isoaspartic acid to 6.6% at pH 5.4, 6.0% at pH 5.8, and 5.6% at pH 6.2.


Antibodies, Monoclonal/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Isoaspartic Acid/analysis , Antibodies, Monoclonal/analysis , Isomerism , Mass Spectrometry/methods , Peptide Fragments/analysis , Peptide Fragments/chemistry
...