Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1076-1086, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872278

RESUMEN

Based on GC-MS and network pharmacology, the active constituents, potential targets, and mechanism of essential oil from Gleditsiae Fructus Abnormalis(EOGFA) against cerebral ischemia/reperfusion(I/R) injury were explored, and the effective constituents were verified by experiment. To be specific, GC-MS was used identify the constituents of the volatile oil. Secondly, the targets of the constituents and disease were predicted by network pharmacology, and the drug-constituent-target network was constructed, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the core targets. Molecular docking was performed to investigate the binding affinity between the active constituents and the targets. Finally, SD rats were used for experimental verification. The I/R injury model was established, and the neurological behavior score, infarct volume, and pathological morphology of brain tissue were measured in each group. The content of interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-alpha(TNF-α) was determined by enzyme-linked immunosorbent assay(ELISA), and the protein expression of vascular endothelial growth factor(VEGF) by Western blot. A total of 22 active constituents and 17 core targets were screened out. The core targets were involved in 56 GO terms and the major KEGG pathways of TNF signaling pathway, VEGF signaling pathway, and sphingolipid signaling pathway. Molecular docking showed that the active constituents had high affinity to the targets. The results of animal experiment suggested that EOGFA can alleviate the neurological impairment, decrease the cerebral infarct volume and the content of IL-1ß, IL-6 and TNF-α, and down-regulate the expression of VEGF. The experiment verified the part results of network pharmacology. This study reflects the multi-component, multi-target, and multi-pathway characteristics of EOGFA. The mechanism of its active constituents is related to TNF and VEGF pathways, which provides a new direction for in-depth research on and secondary development of Gleditsiae Fructus Abnormalis.


Asunto(s)
Aceites Volátiles , Daño por Reperfusión , Animales , Ratas , Ratas Sprague-Dawley , Farmacología en Red , Cromatografía de Gases y Espectrometría de Masas , Interleucina-6 , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular , Infarto Cerebral
2.
Artículo en Inglés | MEDLINE | ID: mdl-34760019

RESUMEN

Fructus Gleditsiae Abnormalis (FGA) has been used as a traditional Chinese medicine (TCM) for the treatment of stroke caused by phlegm and blood stasis. However, its substance basis and mechanism of action are currently unknown. This study is aimed to analyze the constituents of the volatile oil in FGA (VOFGA) using gas chromatography coupled with mass spectrometry (GC-MS) and explore the underlying effects and mechanisms of VOFGA in the prevention and treatment of ischemia stroke. An in vivo ischemia model was constructed by combination treatment of high-fat diet (HFD) and middle cerebral artery occlusion (MCAO) method. After administration, the cerebral infarction volume, the brain water content, hemorheology, blood lipids, inflammatory factors, oxidative stress indicators, Bax, Bcl-2, and cleaved caspase-3 and histological examination (HE) were determined and observed to explore the underlying effects and mechanisms of VOFGA against ischemia stroke. The results showed that forty components were determined after analyzed by GC-MS, and the percentage content of palmitate, paeonol, violetone, linalool, salpinol, citral, and methyleugenol were 4.69%, 5.2%, 3.56%, 3.31%, 2.42%, 2.65%, and 1.67%, respectively. The high dose of VOFGA could inhibit neurological damage; reduce the cerebral infarction volume and brain water content; improve whole blood viscosity and red blood cell aggregation index at various shear rates; reduce the levels of TG, TC, LDL-C, TNF-α, IL-1ß, MDA, and NO; increase the contents of HDL-C, IL-10, and SOD; downregulate the expressions of Bax and cleaved caspase-3 in the ischemic regions; and upregulate the expressions of Bcl-2. These effects implied that VOFGA may exert neuroprotective effects via inhibiting ischemia-triggered oxidative damage-regulating blood lipid factors and reducing the production of proinflammatory mediators against cerebral I/R injury and neuronal apoptosis. The VOFGA presents a potential treatment value for cerebral ischemic stroke, and it may offer insights into discovering new active compounds for the treatment of ischemic stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...