Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(19): e2400421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38576069

RESUMEN

Glioblastoma (GBM), the most prevalent and aggressive primary malignant brain tumor, exhibits profound immunosuppression and demonstrates a low response rate to current immunotherapy strategies. Manganese cations (Mn2+) directly activate the cGAS/STING pathway and induce the unique catalytic synthesis of 2'3'-cGAMP to facilitate type I IFN production, thereby enhancing innate immunity. Here, a telodendrimer and Mn2+-based nanodriver (PLHM) with a small size is developed, which effectively target lymph nodes through the blood circulation and exhibit tumor-preventive effects at low doses of Mn2+ (3.7 mg kg-1). On the other hand, the PLHM nanodriver also exhibits apparent antitumor effects in GBM-bearing mice via inducing in vivo innate immune responses. The combination of PLHM with doxorubicin nanoparticles (PLHM-DOX NPs) results in superior inhibition of tumor growth in GBM-bearing mice due to the synergistic potentiation of STING pathway functionality by Mn2+ and the presence of cytoplasmic DNA. These findings demonstrate that PLHM-DOX NPs effectively stimulate innate immunity, promote dendritic cell maturation, and orchestrate cascaded infiltration of CD8 cytotoxic T lymphocytes within glioblastomas characterized by low immunogenicity. These nanodivers chelated with Mn2+ show promising potential for tumor prevention and antitumor effects on glioblastoma by activating the STING pathway.


Asunto(s)
Doxorrubicina , Glioblastoma , Manganeso , Proteínas de la Membrana , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/prevención & control , Animales , Manganeso/química , Manganeso/farmacología , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Humanos , Línea Celular Tumoral , Proteínas de la Membrana/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/prevención & control , Neoplasias Encefálicas/metabolismo , Nanopartículas/química , Inmunidad Innata/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Small ; 20(15): e2306809, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009781

RESUMEN

The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.


Asunto(s)
Biomimética , Lesiones Traumáticas del Encéfalo , Humanos , Péptidos , Lesiones Traumáticas del Encéfalo/diagnóstico , Pronóstico , Biomarcadores , Subunidad beta de la Proteína de Unión al Calcio S100
3.
Biomater Sci ; 11(1): 162-169, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36398488

RESUMEN

Tumor cells activate DNA repair pathways to combat the oxidative damage induced by reactive oxygen species (ROS), contributing to their resistance to photodynamic therapy (PDT). Herein, a self-delivery photodynamic sensitizer is developed to enhance oxidative damage by blocking the DNA repair pathway through poly(ADP-ribose) polymerase (PARP) inhibition. Specifically, the photodynamic sensitizer (CeOla) is constructed based on the self-assembly of the photosensitizer chlorine e6 (Ce6) and the PARP inhibitor olaparib (Ola). Of note is that carrier free CeOla has a high drug content and favorable water stability, which could be effectively internalized by tumor cells for robust PDT upon light irradiation. Moreover, CeOla could inhibit the activation of PARP, promote the upregulation of γ-H2AX and reduce the expression of Rad51, thereby blocking the DNA repair pathway to sensitize tumor cells for PDT. As a consequence, the self-delivery CeOla greatly promotes the tumor cell apoptosis and shows a high antitumor performance with low side effects. It serves as a novel platform for the development of self-delivery nanomedicine to overcome oxidative resistance in tumor treatment.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antineoplásicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Daño del ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Línea Celular Tumoral
4.
ACS Appl Bio Mater ; 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999814

RESUMEN

Although photodynamic therapy (PDT) is a promising antitumor strategy for tumor treatment, the short half-life and the limited diffusion distance of reactive oxygen species (ROS) greatly hamper its antitumor efficacy. Moreover, tumor cells develop antioxidative microenvironments to weaken the oxidative damage caused by PDT. Herein, a plasma membrane-targeted photooxidant (designated as SCPP) is prepared by the self-assembly of a chimeric peptide (Pal-K(PpIX)-R4) and sorafenib. Plasma membrane-targeted SCPP could enhance lipid peroxidation (LPO) through in situ PDT upon light irradiation. Moreover, sorafenib-mediated chemotherapy could block cystine/glutamate antiporter xCT (SLC7A11) to inhibit the syntheses of intracellular GSH and glutathione peroxidase 4 (GPX4), which would destroy the antioxidant defense system of tumors. As a consequence, SCPP achieves a highly efficient tumor inhibition through enhanced PDT and ferroptosis therapy. This study might provide guidance for multisynergistic tumor therapy with a sophisticated mechanism under unfavorable conditions.

5.
Biomaterials ; 286: 121576, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598336

RESUMEN

Mitochondrial uncouplers are capable of maximizing cell respiration to induce local hypoxia, which provides a promising target for bioreductive therapy. In this work, we develop a metal-coordinated mitochondria protonophore uncoupler (designated as Cu-BAQ) for O2-exhausting enhanced bioreductive therapy. In brief, carrier free Cu-BAQ is self-assembled by copper ion (Cu2+), mitochondria protonophore uncoupler (BAM15) and bioreductive drug (AQ4N), which possesses a favorable stability and an improved bioavailability. After intravenous administration, nanosized Cu-BAQ prefers to accumulate at tumor site for effective cellular uptake. Moreover, the Cu2+-coordinated nanomedicine of Cu-BAQ exhibits a glutathione (GSH) responsive drug release behavior and the released BAM15 could promote the mitochondria uncoupling to maximize the cell respiration. As a result, the excessive O2 consumption would induce local hypoxia to activate AQ4N for enhanced bioreductive therapy. In vivo investigations demonstrate that Cu-BAQ is able to regulate tumor hypoxia microenvironment and significantly inhibit tumor growth with a minimized side effect. This GSH-responsive self-delivery nanoplatform provides a new insight for the development of individualized biomedicine for hypoxic tumor precision therapy.


Asunto(s)
Mitocondrias , Nanomedicina , Línea Celular Tumoral , Humanos , Hipoxia , Microambiente Tumoral
6.
Small ; 18(15): e2107467, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35224854

RESUMEN

Abnormal tumor metabolism causes the hypoxic microenvironment, which greatly limits the efficacy of photodynamic therapy (PDT). In this work, a strategy of metabolic reprogramming is proposed to economize O2 for enhanced PDT against hypoxic tumors. The carrier-free O2 -economizer (designated as LonCe) is prepared based on the metabolic antitumor drug of Lonidamine (Lon) and the photosensitizer of chlorin e6 (Ce6). By virtue of intermolecular interactions, Lon and Ce6 self-assemble into nanosized LonCe with favorable stability and high drug contents. Compared with Ce6, LonCe exhibits an improved cellular uptake and photodynamic property for tumor treatment. Moreover, LonCe is capable of inhibiting cell metabolism and mitochondrial respiration to remit the tumor hypoxia, which would promote reactive oxygen species (ROS) production and elevate the PDT efficacy on tumor suppression. In vivo experiments indicate that intravenously injected LonCe prefers to accumulate at the tumor site for highly efficient PDT regardless of the hypoxic environment. Besides, the self-delivery LonCe is fabricated without any carriers, which avoids the excipients induced system toxicity and immunogenicity in vivo. This carrier-free nanomedicine with cell respiratory inhibition mechanism would expedite the development and clinical translation of photodynamic nanoplatforms in tumor treatment.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Línea Celular Tumoral , Excipientes , Humanos , Hipoxia/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología , Porfirinas/uso terapéutico , Hipoxia Tumoral
7.
J Colloid Interface Sci ; 612: 562-571, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026565

RESUMEN

Tumor vascular blockade is a promising strategy for adjuvant cancer treatment. In this work, a self-delivery nanomedicine is developed based on a vascular disruptor and photosensitizer for tumor synergistic therapy. Specifically, this nanomedicine (designated as CeCA) is comprised of combretastatin A4 (CA4) and chlorine e6 (Ce6) by self-assembly technique. Among which, CA4 could not only induce tubulin inhibition for chemotherapy but also disrupt the vasculature to cause tumor hemorrhage. Moreover, Ce6 is able to generate lots of singlet oxygen (1O2) for synergistic photodynamic therapy (PDT) under light irradiation. It is interesting that the carrier-free CeCA possessed a favorable stability and an improved cellular uptake behavior. After intravenous administration, CeCA prefers to accumulate at tumor site for vascular disruption-supplemented chemo-photodynamic therapy. Notably, CeCA is prepared without additional carriers, which avoids the system toxicity raised by excipients. Consequently, CeCA greatly inhibits the tumor growth and leads to a low side effect in vivo. It might open a window in the development of self-supplementary nanomedicine for synergistic tumor treatment.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Línea Celular Tumoral , Doxorrubicina , Nanomedicina , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
8.
Small ; 17(40): e2102470, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480417

RESUMEN

Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588-mediated MTH1 inhibition could destroy the ROS-defensing system of tumor cells by preventing the elimination of 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self-delivery nanoplatforms in photodynamic tumor therapy in clinic.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Línea Celular Tumoral , Estrés Oxidativo , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno
9.
Biomater Sci ; 9(9): 3445-3452, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33949456

RESUMEN

Multidrug resistance (MDR) is one of the prime reasons for the failure of cancer chemotherapy, which continues to be a great challenge to be solved. In this work, α-tocopherol succinate (α-TOS) and doxorubicin (DOX)-based self-delivery nanomedicine (designated as α-TD) is prepared to combat drug resistance for cancer synergistic chemotherapy. Carrier-free α-TD possesses a fairly high drug loading rate and improves the cellular uptake via the endocytosis pathway. More importantly, the apoptotic inducer α-TOS could elevate the reactive oxygen species (ROS) generation, disrupt mitochondrial function and reduce adenosine 5'-triphosphate (ATP) production, which facilitate the intracellular drug retention while decreasing its efflux. As a result, α-TD achieves a considerable synergistic chemotherapeutic effect against drug resistant cancer cells. Moreover, it also exhibits a preferable inhibitory effect on tumor growth with a low system toxicity in vivo. This synergistic drug self-delivery strategy would open a new window for developing carrier-free nanomedicine for overcoming drug resistance in cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/farmacología , Portadores de Fármacos/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Células MCF-7 , Nanomedicina
10.
Biomaterials ; 273: 120854, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33932703

RESUMEN

The development of photodynamic therapy (PDT) is severely limited by short half-life of singlet oxygen (1O2) and the hypoxic microenvironment. In this work, a plasma membrane targeted photodynamic O2 economizer (designated as P-POE) is developed to improve the subcellular delivery of photosensitizers and alleviate the tumor hypoxia for enhanced PDT effect. After self-assembly into nanomicelles, P-POE has a relatively high stability and a favorable photochemical performance, which are conducive to boosting the 1O2 production. Besides, the plasma membrane anchoring of P-POE contributes to enhancing the preferential retention and cellular accumulation of photosensitizers on tumor tissues and cells. More importantly, P-POE-induced mitochondrial respiratory depression is demonstrated to reduce the O2 consumption of tumor cells to relieve the hypoxia. Consequently, P-POE still exhibits a robust PDT effect against hypoxic tumors, which greatly inhibits the proliferation of breast cancer with low adverse reactions. This innovative combination of subcellular targeting and hypoxic alleviation would advance the development of individualized drug delivery systems for photodynamic therapy against hypoxic tumors.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Línea Celular Tumoral , Membrana Celular , Humanos , Hipoxia/tratamiento farmacológico , Oxígeno , Fármacos Fotosensibilizantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA