Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431450

RESUMEN

The bonding performance between a basalt fiber-reinforced composite material (BFRP) grid and an engineering cementitious composite (ECC) is the basis that affects the synergy between the two. However, the research on the bonding behavior between the FRP grid and ECC is limited; in particular, the theoretical study on the bond-slip intrinsic relationship model and a reliable anchorage length calculation equation is lacking. To study the bond-slip relationship between the BFRP grid and ECC material, we considered the parameters of BFRP grid thickness, anchorage length, ECC substrate protective layer thickness, and grid surface treatment, and conducted center pull-out tests on eight sets of specimens. By analyzing the characteristics of the bond-slip curve of the specimen, a bond-slip constitutive model between the BFRP grid and ECC was established. Combining the principle of equivalent strain energy, the calculation formula of the basic anchorage length of the BFRP grid in the ECC matrix was derived. Research shows that the bonding performance between the BFRP grid and ECC improves with the increase in the grid anchoring length, grid thickness, and ECC layer strength. Sand sticking on the surface of the BFRP grid can enhance the bonding force between the two. The established bond-slip constitutive model curve is in good agreement with the test curve. The bond-slip relationship between the BFRP grid and ECC can be described by the first two stages in the BPE model. The derived formula for calculating the basic anchorage length of the BFRP mesh in the ECC matrix is computationally verified to be reliable in prediction.

2.
Materials (Basel) ; 14(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34300856

RESUMEN

The axial tensile properties of FRP mesh-reinforced ECC composites (TRE) were investigated experimentally under the consideration of four influencing factors: grid type, number of reinforcement layers, ECC matrix thickness, and sticky sand treatment on the grid surface. The test results showed that the axial stiffness and tensile strength of the composite were significantly increased, and the tensile properties were significantly improved under the effect of FRP grid reinforcement. Increasing the thickness of the ECC matrix can obviously improve the crack resistance of composites. The ultimate tensile strength of FRP lattice-reinforced ECC composites increased significantly with the increase in the number of lattice layers, but had no significant effect on the crack resistance. The tensile properties of CFRP grid-reinforced ECC composites were slightly better compared to BFRP grid-reinforced ECC composites. The crack resistance and ultimate tensile strength of the composites were slightly improved by impregnating the surface of the FRP grid with adhesive-bonded sand treatment. Based on the experimental data, the tensile stress-strain constitutive model of FRP grid-reinforced ECC composites is established. The calculation results show that the theoretical values of the model agree well with the experimental values. Therefore, it can be used to reflect the stress-strain change state of FRP lattice-reinforced ECC composites during axial tension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA