Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Chem Commun (Camb) ; 59(95): 14181-14184, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-37961832

The Co/CoO/CoCH (P-CoCH) nanowire core/shell arrays were prepared by a one step hydrothermal method and rapid reduction of cobalt carbonate hydroxide (CoCH) in Ar/H2 plasma for the first time. The rapid reduction process endows the P-CoCH with a unique porous structure, larger electrochemical active surface area and abundant activity sites. Therefore, the as-prepared P-CoCH nanowire core/shell arrays show superior HER performance with a low overpotential of 69 mV and a small Tafel slope of 47 mV dec-1 at a current density of 10 mA cm-2. In addition, the P-CoCH electrocatalyst demonstrates an excellent cycling stability without any obvious decay after 24 h continuous operation at 100 mA cm-2 current density. This study might provide a new insight into the rapidly construction of efficient HER Co-based electrocatalysts and beyond.

5.
Small ; 16(40): e2004072, 2020 Oct.
Article En | MEDLINE | ID: mdl-32893499

Tin disulfide (SnS2 ) shows promising properties toward sodium ion storage with high capacity, but its cycle life and high rate capability are still undermined as a result of poor reaction kinetics and unstable structure. In this work, phosphate ion (PO4 3- )-doped SnS2 (P-SnS2 ) nanoflake arrays on conductive TiC/C backbone are reported to form high-quality P-SnS2 @TiC/C arrays via a hydrothermal-chemical vapor deposition method. By virtue of the synergistic effect between PO4 3- doping and conductive network of TiC/C arrays, enhanced electronic conductivity and enlarged interlayer spacing are realized in the designed P-SnS2 @TiC/C arrays. Moreover, the introduced PO4 3- can result in favorable intercalation/deintercalation of Na+ and accelerate electrochemical reaction kinetics. Notably, lower bandgap and enhanced electronic conductivity owing to the introduction of PO4 3- are demonstrated by density function theory calculations and UV-visible absorption spectra. In view of these positive factors above, the P-SnS2 @TiC/C electrode delivers a high capacity of 1293.5 mAh g-1 at 0.1 A g-1 and exhibits good rate capability (476.7 mAh g-1 at 5 A g-1 ), much better than the SnS2 @TiC/C counterpart. This work may trigger new enthusiasm on construction of advanced metal sulfide electrodes for application in rechargeable alkali ion batteries.

6.
Adv Mater ; 32(34): e2003657, 2020 Aug.
Article En | MEDLINE | ID: mdl-32686213

Lithium-sulfur batteries (LSBs) are regarded as promising next-generation energy storage systems, however, the uncontrollable dendrite formation and serious polysulfide shuttling severely hinder their commercial success. Herein, a powerful 3D sponge nickel (SN) skeleton plus in situ surface engineering strategy, to address these issues synergistically, is reported, and a high-performance flexible LSB device is constructed. Specifically, the rationally designed spray-quenched lithium metal on the SN matrix (solid electrolyte interface (SEI)@Li/SN), as dendrite inhibitor, combines the merits of the 3D lithiophilic SN skeleton and the in situ formed SEI layer derived from the spray-quenching process, and thereby exhibits a steady overpotential within 75 mV for 1500 h at 5 mA cm-2 /10 mA h cm-2 . Meanwhile, in situ surface sulfurization of the SN skeleton hybridizing with the carbon/sulfur composite (SC@Ni3 S2 /SN) serves as efficient lithium polysulfide adsorbent to catalyze the overall reaction kinetics. COMSOL Multiphysics simulations and density functional theory calculations are further conducted to explore the underlying mechanisms. As a proof of concept, the well-designed SEI@Li/SN||SC@Ni3 S2 /SN full cell shows excellent electrochemical performance with a negative/positive ratio in capacity of ≈2 and capacity retention of 99.82% at 1 C under mechanical deformation. The novel design principles of these materials and electrodes successfully shed new light on the development of flexible LSBs.

7.
J Colloid Interface Sci ; 572: 151-159, 2020 Jul 15.
Article En | MEDLINE | ID: mdl-32240788

The exploration of flexible supercapacitors with high energy density is a matter of considerable interest to meet the demand of wearable electronic devices. In this work, with carbon nanotubes (CNTs) grown on carbon cloth (CC) as flexible substrate, NiCoP nanoflake-surrounded CNT nanoarrays (NiCoP/CNT) and N-doped carbon coated CNT nanoarrays (CNT@N-C) were synthesized on CC and utilized as cathode and anode materials for constructing flexible all-solid-state hybrid supercapacitor. Both them exhibit excellent electrochemical performance. NiCoP/CNT/CC composites can deliver a specific capacitance of 261.4 mAh g-1, and CNT@N-C/CC exhibits a high capacitance of 256 F g-1 at the current density of 0.5 A g-1. The hybrid supercapacitor built from the two well designed electrodes can provide a specific capacitance of 123.3 mAh g-1 at current density 1 mA g-1 within a potential window of 0-1.5 V and retain almost 85% of its initial capacitance after 5000 cycles. Furthermore, the flexible devices show the maximum energy density of 138.7 Wh kg-1 and a power density of 6.25 kW kg-1, obviously superior to some recent reported supercapacitor devices, indicating its potential in practical application.

8.
Nat Commun ; 11(1): 132, 2020 Jan 09.
Article En | MEDLINE | ID: mdl-31919355

Exploring advanced battery materials with fast charging/discharging capability is of great significance to the development of modern electric transportation. Herein we report a powerful synergistic engineering of carbon and deficiency to construct high-quality three/two-dimensional cross-linked Ti2Nb10O29-x@C composites at primary grain level with conformal and thickness-adjustable boundary carbon. Such exquisite boundary architecture is demonstrated to be capable of regulating the mechanical stress and concentration of oxygen deficiency for desired performance. Consequently, significantly improved electronic conductivity and enlarged lithium ion diffusion path, shortened activation process and better structural stability are realized in the designed Ti2Nb10O29-x@C composites. The optimized Ti2Nb10O29-x@C composite electrode shows fast charging/discharging capability with a high capacity of 197 mA h g-1 at 20 C (∼3 min) and excellent long-term durability with 98.7% electron and Li capacity retention over 500 cycles. Most importantly, the greatest applicability of our approach has been demonstrated by various other metal oxides, with tunable morphology, structure and composition.

10.
ChemSusChem ; 13(6): 1575-1581, 2020 Mar 20.
Article En | MEDLINE | ID: mdl-31646763

The use of active sites and reaction kinetics of MoSe2 anodes for sodium ion batteries (SIBs) are highly related to the phase components (1T and 2H phases) and electrode architecture. This study concerns the design and fabrication of wrinkled 1T-MoSe2 nanoflakes anchored on highly conductive TiC@C nanorods to form 1T-MoSe2 /TiC@C branch-core arrays by a powerful chemical vapor deposition (CVD)-solvothermal method. The 1T-MoSe2 branch can be easily transformed into its 2H-MoSe2 counterpart after a facile annealing process. In comparison to 2H-MoSe2 , 1T-MoSe2 has larger interlayer spacing and higher electronic conductivity, which are beneficial for the acceleration of reaction kinetics and capacity improvement. In addition, direct growth of 1T-MoSe2 nanoflakes on the TiC@C skeleton not only enhance the electrical conductivity, but also contribute to reinforced structural stability. Accordingly, 1T-MoSe2 /TiC@C branch-core arrays are demonstrated with higher capacity and better rate performance (184 mAh g-1 at 10 A g-1 ) and impressive durability over 500 cycles with a capacity retention of approximately 91.8 %. This phase modulation plus branch-core design provides a general method for the synthesis of other high-performance electrode materials for application in electrochemical energy storage.

11.
J Colloid Interface Sci ; 562: 511-517, 2020 Mar 07.
Article En | MEDLINE | ID: mdl-31780116

Controllable fabrication of advanced electrode materials is critical for the development of lithium ion batteries (LIBs). Herein, for the first time, we report novel hierarchical porous chromium niobium oxide (Cr0.5Nb24.5O62) microspheres prepared by a facile one-step solvothermal method. The as-prepared Cr0.5Nb24.5O62 microspheres present 3D hierarchical porous structure consisting of cross-linked nanoparticles, high electronic conductivity and large specific surface area. Accordingly, the Cr0.5Nb24.5O62 microspheres show noticeable lithium ion storage performance with superior high-rate capability (199 mAh g-1 at 20C) and good cycling stability with a capacity retention of 95% over 1000 cycles, much better than the bulk Cr0.5Nb24.5O62 and TiNb24O62 counterparts. Our work demonstrates a new high-rate electrode material for high-power energy storage.

12.
Small ; 15(47): e1905452, 2019 Nov.
Article En | MEDLINE | ID: mdl-31608588

Defect engineering (doping and vacancy) has emerged as a positive strategy to boost the intrinsic electrochemical reactivity and structural stability of MnO2 -based cathodes of rechargeable aqueous zinc ion batteries (RAZIBs). Currently, there is no report on the nonmetal element doped MnO2 cathode with concomitant oxygen vacancies, because of its low thermal stability with easy phase transformation from MnO2 to Mn3 O4 (≥300 °C). Herein, for the first time, novel N-doped MnO2- x (N-MnO2- x ) branch arrays with abundant oxygen vacancies fabricated by a facile low-temperature (200 °C) NH3 treatment technology are reported. Meanwhile, to further enhance the high-rate capability, highly conductive TiC/C nanorods are used as the core support for a N-MnO2- x branch, forming high-quality N-MnO2- x @TiC/C core/branch arrays. The introduced N dopants and oxygen vacancies in MnO2 are demonstrated by synchrotron radiation technology. By virtue of an integrated conductive framework, enhanced electron density, and increased surface capacitive contribution, the designed N-MnO2- x @TiC/C arrays are endowed with faster reaction kinetics, higher capacity (285 mAh g-1 at 0.2 A g-1 ) and better long-term cycles (85.7% retention after 1000 cycles at 1 A g-1 ) than other MnO2 -based counterparts (55.6%). The low-temperature defect engineering sheds light on construction of advanced cathodes for aqueous RAZIBs.

13.
Angew Chem Int Ed Engl ; 58(45): 16289-16296, 2019 Nov 04.
Article En | MEDLINE | ID: mdl-31487116

A synergistic N doping plus PO4 3- intercalation strategy is used to induce high conversion (ca. 41 %) of 2H-MoS2 into 1T-MoS2 , which is much higher than single N doping (ca. 28 %) or single PO4 3- intercalation (ca. 10 %). A scattering mechanism is proposed to illustrate the synergistic phase transformation from the 2H to the 1T phase, which was confirmed by synchrotron radiation and spherical aberration TEM. To further enhance reaction kinetics, the designed (N,PO4 3- )-MoS2 nanosheets are combined with conductive vertical graphene (VG) skeleton forming binder-free arrays for high-efficiency hydrogen evolution reaction (HER). Owing to the decreased band gap, lower d-band center, and smaller hydrogen adsorption/desorption energy, the designed (N,PO4 3- )-MoS2 /VG electrode shows excellent HER performance with a lower Tafel slope and overpotential than N-MoS2 /VG, PO4 3- -MoS2 /VG counterparts, and other Mo-base catalysts in the literature.

14.
Nanotechnology ; 30(48): 484001, 2019 11 29.
Article En | MEDLINE | ID: mdl-31430739

The tailored construction of non-noble metal bifunctional electrocatalysts for high-efficiency oxygen/hydrogen evolution reactions (OER/HER) is vital for the development of electrochemical energy conversion. Herein, we report a powerful combined wet chemical method to fabricate a novel binder-free NiFe layered double hydroxide@Ni3S2 (NiFe LDH@Ni3S2) heterostructure as an efficient bifunctional electrocatalyst for overall water splitting. The hydrothermal-synthesized NiFe LDH nanosheets are uniformly coated on the Ni3S2 nanosheet skeleton forming 3D porous heterostructure arrays. By virtue of its synergistic advantages, including its binder-free characteristics, increased catalysis sites and structural stability, the as-obtained NiFe LDH@Ni3S2/NF electrode exhibits low overpotentials of 184 and 271 mV at 20 mA cm-2 for HER and OER in 1 M KOH, respectively. Notably, a low operation potential of 1.74 V at a current density of 20 mA cm-2 is achieved for overall water splitting with a stable cycling life. In addition, the intimate composite structure and sensitive interface of NiFe LDH@Ni3S2 are responsible for the good electrocatalytic activity with a low Tafel slope, fast reaction kinetics and high stability. The versatile fabrication protocol and heterostructure interface engineering provide a new way to construct other bifunctional and cost-effective electrocatalysts for electrocatalysis.

15.
Small ; 15(30): e1901796, 2019 07.
Article En | MEDLINE | ID: mdl-31172634

Performance breakthrough of MoSe2 -based hydrogen evolution reaction (HER) electrocatalysts largely relies on sophisticated phase modulation and judicious innovation on conductive matrix/support. In this work the controllable synthesis of phosphate ion (PO43- ) intercalation induced-MoSe2 (P-MoSe2 ) nanosheets on N-doped mold spore carbon (N-MSC) forming P-MoSe2 /N-MSC composite electrocatalysts is realized. Impressively, a novel conductive N-MSC matrix is constructed by a facile mold fermentation method. Furthermore, the phase of MoSe2 can be modulated by a simple phosphorization strategy to realize the conversion from 2H-MoSe2 to 1T-MoSe2 to produce biphase-coexisted (1T-2H)-MoSe2 by PO43- intercalation (namely, P-MoSe2 ), confirmed by synchrotron radiation technology and spherical aberration-corrected TEM (SACTEM). Notably, higher conductivity, lower bandgap and adsorption energy of H+ are verified for the P-MoSe2 /N-MSC with the help of density functional theory (DFT) calculation. Benefiting from these unique advantages, the P-MoSe2 /N-MSC composites show superior HER performance with a low Tafel slope (≈51 mV dec-1 ) and overpotential (≈126 mV at 10 mA cm-1 ) and excellent electrochemical stability, better than 2H-MoSe2 /N-MSC and MoSe2 /carbon nanosphere (MoSe2 /CNS) counterparts. This work demonstrates a new kind of carbon material via biological cultivation, and simultaneously unravels the phase transformation mechanism of MoSe2 by PO43- intercalation.

16.
Nanotechnology ; 30(40): 404001, 2019 Oct 04.
Article En | MEDLINE | ID: mdl-31247616

Exploring new non-noble metallic catalysts with highly efficient and stable catalytic performance toward a hydrogen evolution reaction (HER) is a major requirement in the field of electrochemical water splitting. In this study, we report a facile strategy to synthesize a three-dimensional (3D) porous TiO2/Co9S8 core-branch nanosheet arrays on Ni foam with superior HER catalytic activity. The hierarchically 3D porous architecture not only provides rich active sites, but also enables fast electron transport and easy electrolyte permeation. Consequently, the TiO2/Co9S8 core-branch nanosheet arrays achieve a remarkably low overpotential of 150 mV at 10 mA cm-2, small Tafel slope of 71 mV Dec-1 and outstanding long-term stability for the HER reaction. The elaborate design should provide a new strategy to controllably synthesize porous and rational nanostructured materials as a prominent electrocatalyst for water splitting applications.

17.
Adv Mater ; 31(16): e1900009, 2019 Apr.
Article En | MEDLINE | ID: mdl-30843629

Tailored construction of advanced carbon hosts is playing a great role in the development of high-performance lithium-sulfur batteries (LSBs). Herein, a novel N,P-codoped trichoderma spore carbon (TSC) with a bowl structure, prepared by a "trichoderma bioreactor" and annealing process is reported. Moreover, TSC shows excellent compatibility with conductive niobium carbide (NbC), which is in situ implanted into the TSC matrix in the form of nanoparticles forming a highly porous TSC/NbC host. Importantly, NbC plays a dual role in TSC for not only pore formation but also enhancement of conductivity. Excitingly, the sulfur can be well accommodated in the TSC/NbC host forming a high-performance TSC/NbC-S cathode, which exhibits greatly enhanced rate performance (810 mAh g-1 at 5 C) and long cycling life (937.9 mAh g-1 at 0.1 C after 500 cycles), superior to TSC-S and other carbon/S counterparts due to the larger porosity, higher conductivity, and better synergetic trapping effect for the soluble polysulfide intermediate. The synergetic work of porous the conductive architecture, heterodoped N&P polar sites in TSC and polar conductive NbC provides new opportunities for enhancing physisorption and chemisorption of polysulfides leading to higher capacity and better rate capability.


Niobium/chemistry , Spores, Fungal/metabolism , Sulfur/chemistry , Trichoderma/metabolism , Bioelectric Energy Sources , Electric Conductivity , Electrochemical Techniques , Electrodes , Niobium/metabolism , Porosity , Sulfides/chemistry , Thermodynamics
18.
Nanomicro Lett ; 11(1): 21, 2019 Mar 09.
Article En | MEDLINE | ID: mdl-34137962

Controllable synthesis of highly active micro/nanostructured metal electrocatalysts for oxygen evolution reaction (OER) is a particularly significant and challenging target. Herein, we report a 3D porous sponge-like Ni material, prepared by a facile hydrothermal method and consisting of cross-linked micro/nanofibers, as an integrated binder-free OER electrocatalyst. To further enhance the electrocatalytic performance, an N-doping strategy is applied to obtain N-doped sponge Ni (N-SN) for the first time, via NH3 annealing. Due to the combination of the unique conductive sponge structure and N doping, the as-obtained N-SN material shows improved conductivity and a higher number of active sites, resulting in enhanced OER performance and excellent stability. Remarkably, N-SN exhibits a low overpotential of 365 mV at 100 mA cm-2 and an extremely small Tafel slope of 33 mV dec-1, as well as superior long-term stability, outperforming unmodified sponge Ni. Importantly, the combination of X-ray photoelectron spectroscopy and near-edge X-ray adsorption fine structure analyses shows that γ-NiOOH is the surface-active phase for OER. Therefore, the combination of conductive sponge structure and N-doping modification opens a new avenue for fabricating new types of high-performance electrodes with application in electrochemical energy conversion devices.

19.
Nanomicro Lett ; 11(1): 12, 2019 Feb 05.
Article En | MEDLINE | ID: mdl-34137974

For efficient electrolysis of water for hydrogen generation or other value-added chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-efficiency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core-branch array and binder-free electrode by growing Ni3S2 nanoflake branches on an atomic-layer-deposited (ALD) TiO2 skeleton. Through induced growth on the ALD-TiO2 backbone, cross-linked Ni3S2 nanoflake branches with exposed {[Formula: see text]} high-index facets are uniformly anchored to the preformed TiO2 core forming an integrated electrocatalyst. Such a core-branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed {[Formula: see text]} high-index facet in the Ni3S2 nanoflake. Accordingly, the TiO2@Ni3S2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction (220 mV at 10 mA cm-2) and hydrogen evolution reaction (112 mV at 10 mA cm-2), which are better than those of other Ni3S2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.

20.
Adv Mater ; 31(3): e1806470, 2019 Jan.
Article En | MEDLINE | ID: mdl-30462861

Uncontrollable growth of Li dendrites and low utilization of active Li severely hinder its practical application. Construction of an artificial solid electrolyte interphase (SEI) on Li is demonstrated as one of the most effective ways to circumvent the above problems. Herein, a novel spray quenching method is developed in situ to fabricate an organic-inorganic composite SEI on Li metal. By spray quenching molten Li in a modified ether-based solution, a homogeneous and dense SEI consisting of organic matrix embedded with inorganic LiF and Li3 N nanocrystallines (denoted as OIFN) is constructed on Li metal. Arising from high ionic conductivity and strong mechanical stability, the OIFN can not only effectively minimize the corrosion reaction of Li, but also greatly suppresses the dendrite growth. Accordingly, the OIFN-Li anode presents prominent electrochemical performance with an enhanced Coulombic efficiency of 98.15% for 200 cycles and a small hysteresis of <450 mV even at ultrahigh current density up to 10 mA cm-2 . More importantly, during the full cell test with limited Li source, a high utilization of Li up to 40.5% is achieved for the OIFN-Li anode. The work provides a brand-new route to fabricate advanced SEI on alkali metal for high-performance alkali-metal batteries.

...