Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Chem Commun (Camb) ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132718

RESUMEN

Direct regeneration is an effective strategy of spent lithium iron phosphate (S-LFP), with the principal aspect being the selection of the lithium source and reductant. Here, assisted with a thermodynamically favourable reaction involving a bifunctional organic lithium salt (lithium citrate), the single-step regeneration of S-LFP is successfully achieved. The structure and composition of the regenerated LFP are significantly restored, demonstrating excellent electrochemical performance (142.7 mA h g-1) with no degradation after 200 cycles.

2.
J Phys Chem Lett ; : 8434-8443, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119908

RESUMEN

Metallic zinc has been regarded as an ideal anode material for aqueous batteries due to its high capacity, abundance, and low toxicity. Numerous strategies have been proposed for anode protection to address its intrinsic deficiencies. However, existing methods can only suppress dendrite growth at limited current densities, and achieving stable cycling at high rates remains a great challenge. Herein, density functional theory (DFT) reveals that Mn-MOF, with a distinctive π-π stacking structure (π-MOF), can induce accelerated ion transfer dynamics, providing high-speed pathways for Zn2+ flux, which can enable stable deposition even at high rates. As anticipated, the π-MOF@Zn anode exhibits remarkable stability for over 1900 h with the lowest voltage hysteresis (71 mV) at a current density of 10 mA cm-2. This study presents a viable approach to enhance the interface stability of high-rate metal anodes by modulating charge or ion behavior at the interface.

3.
ACS Nano ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141003

RESUMEN

Al impurity is among the most likely components to enter the spent lithium-ion battery (LIB) cathode powder due to the strong adhesion between the cathode material and the Al current collector. However, high-value metal elements tend to be lost during the deep removal of Al impurities to obtain high-purity metal salt products in the conventional hydrometallurgical process. In this work, the harmful Al impurity is designed as a beneficial ingredient to upcycle high-voltage LiCoO2 by incorporating robust Al-O covalent bonds into the bulk of the cathode assisted with Ti modification. Benefiting from the strong Al-O and Ti-O bonds in the bulk, the irreversible phase transitions of the upcycled R-LCO-AT have been significantly suppressed at high voltages, as revealed by in situ XRD. Moreover, a Li+-conductive Li2TiO3 protective layer is constructed on the surface of R-LCO-AT by pinning slow-diffusion Ti on the grain boundaries, resulting in improved Li+ diffusion kinetics and restrained interface side reactions. Consequently, the cycle stability and rate performance of R-LCO-AT were significantly enhanced at a high cutoff voltage of 4.6 V, with a discharge capacity of 189.5 mAhg-1 at 1 C and capacity retention of 92.9% over 100 cycles at 4.6 V. This study utilizes the detrimental impurity element to upcycle high-voltage LCO cathodes through an elaborate bulk/surface structural design, offering a strategy for the high-value utilization of spent LIBs.

4.
Angew Chem Int Ed Engl ; : e202410420, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961660

RESUMEN

The structural failure of Na2Mn[Fe(CN)6] could not be alleviated with traditional modification strategies through the adjustable composition property of Prussian blue analogues (PBAs), considering that the accumulation and release of stress derived from the MnN6 octahedrons are unilaterally restrained. Herein, a novel application of adjustable composition property, through constructing a coordination competition relationship between chelators and [Fe(CN)6]4- to directionally tune the enrichment of elements, is proposed to restrain structural degradation and induce unconventional energy coupling phenomenon. The non-uniform distribution of elements at the M1 site of PBAs (NFM-PB) is manipulated by the sequentially precipitated Ni, Fe, and Mn according to the Irving-William order. Electrochemically active Fe is operated to accompany Mn, and zero-strain Ni is modulated to enrich at the surface, synergistically mitigating with the enrichment and release of stress and then significantly improving the structural stability. Furthermore, unconventional energy coupling effect, a fusion of the electrochemical behavior between FeLS and MnHS, is triggered by the confined element distribution, leading to the enhanced electrochemical stability and anti-polarization ability. Consequently, the NFM-PB demonstrates superior rate performance and cycling stability. These findings further exploit potentialities of the adjustable composition property and provide new insights into the component design engineering for advanced PBAs.

5.
Small ; : e2403736, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990899

RESUMEN

Transition metal selenides (TMSs) are receiving considerable interest as improved anode materials for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) due to their considerable theoretical capacity and excellent redox reversibility. Herein, ZIF-12 (zeolitic imidazolate framework) structure is used for the synthesis of Cu2Se/Co3Se4@NPC anode material by pyrolysis of ZIF-12/Se mixture. When Cu2Se/Co3Se4@NPC composite is utilized as an anode electrode material in LIB and SIB half cells, the material demonstrates excellent electrochemical performance and remarkable cycle stability with retaining high capacities. In LIB and SIB half cells, the Cu2Se/Co3Se4@NPC anode material shows the ultralong lifespan at 2000 mAg-1, retaining a capacity of 543 mAhg-1 after 750 cycles, and retaining a capacity of 251 mAhg-1 after 200 cycles at 100 mAg-1, respectively. The porous structure of the Cu2Se/Co3Se4@NPC anode material can not only effectively tolerate the volume expansion of the electrode during discharging and charging, but also facilitate the penetration of electrolyte and efficiently prevents the clustering of active particles. In situ X-ray difraction (XRD) analysis results reveal the high potential of Cu2Se/Co3Se4@NPC composite in building efficient LIBs and SIBs due to reversible conversion reactions of Cu2Se/Co3Se4@NPC for lithium-ion and sodium-ion storage.

6.
Angew Chem Int Ed Engl ; : e202409044, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005168

RESUMEN

The practical application of solid polymer electrolyte is hindered by the small transference number of Li+, low ionic conductivity and poor interfacial stability, which are seriously determined by the microenvironment in polymer electrolyte. The introduction of functional fillers is an effective solution to these problems. In this work, based on density functional theory (DFT) calculations, it is demonstrated that the anion vacancy of filler can anchor anions of lithium salt, thereby significantly increasing the transference number of Li+ in the electrolyte. Therefore, flower-like SnS2-based filler with abundant sulfur vacancies is prepared under the regulation of functionalized carbon dots (CDs). It is worth mentioning that the CDs dotted on the surface of SnS2 have rich organic functional groups, which can serve as the bridging agent to enhance the compatibility of filler and polymer, leading to superior mechanical performance and fast ion transport pathway. Additionally, the in-situ formed Li2S/Li3N at the interface of Li metal and electrolyte facilitate the fast Li+ diffusion and uniform Li deposition, effectively mitigating the growth of lithium dendrites. As a result, the assembled lithium metal batteries exhibit excellent cycling stability, reflecting the superiority of the carbon dots derived vacancy-rich inorganic filler modification strategy.

7.
Adv Mater ; : e2406905, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39081118

RESUMEN

Lithium carbon dioxide (Li-CO2) batteries, noted for their high discharge voltage of approximately 2.8 V and substantial theoretical specific energy of 1876 Wh kg-1, represent a promising avenue for new energy sources and CO2 emission reduction. However, the practical application of these batteries faces significant hurdles, particularly at high current densities and over extended cycle lives, due to their complex reaction mechanisms and slow kinetics. This paper delves into the recent advancements in cathode catalysts for Li-CO2 batteries, with a specific focus on the designing philosophy from composition, geometry, and homogeneity of the catalysts to the proper test conditions and real-world application. It surveys the possible catalytic mechanisms, giving readers a brief introduction of how the energy is stored and released as well as the critical exploration of the relationship between material properties and performances. Specifically, optimization and standardization of test conditions for Li-CO2 battery research is highlighted to enhance data comparability, which is also critical to facilitate the practical application of Li-CO2 batteries. This review aims to bring up inspiration from previous work to advance the design of more effective and sustainable cathode catalysts, tailored to meet the practical demands of Li-CO2 batteries.

8.
ACS Nano ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074061

RESUMEN

On the basis of the sustainable concept, organic compounds and carbon materials both mainly composed of light C element have been regarded as powerful candidates for advanced electrochemical energy storage (EES) systems, due to theie merits of low cost, eco-friendliness, renewability, and structural versatility. It is investigated that the carbonyl functionality as the most common constituent part serves a crucial role, which manifests respective different mechanisms in the various aspects of EES systems. Notably, a systematical review about the concept and progress for carbonyl chemistry is beneficial for ensuring in-depth comprehending of carbonyl functionality. Hence, a comprehensive review about carbonyl chemistry has been summarized based on state-of-the-art developments. Moreover, the working principles and fundamental properties of the carbonyl unit have been discussed, which has been generalized in three aspects, including redox activity, the interaction effect, and compensation characteristic. Meanwhile, the pivotal characterization technologies have also been illustrated for purposefully studying the related structure, redox mechanism, and electrochemical performance to profitably understand the carbonyl chemistry. Finally, the current challenges and promising directions are concluded, aiming to afford significant guidance for the optimal utilization of carbonyl moiety and propel practicality in EES systems.

9.
Chem Commun (Camb) ; 60(57): 7370-7373, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38920095

RESUMEN

A separator modification strategy was proposed by placing nitrogen-doped carbon fibers (NCF700) in the middle of the separator to prevent direct contact between the coating and the rigid zinc metal anode, resulting in coating cracks. The NCF700 coating can homogenize the electric field distribution and increase the transference number of zinc ions. Therefore, the battery assembled with the NCF700 coated separator exhibits superior cycling stability compared to the bare separator.

10.
ACS Nano ; 18(26): 16468-16488, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38900494

RESUMEN

Sodium-ion batteries (SIBs) have significant potential for applications in portable electric vehicles and intermittent renewable energy storage due to their relatively low cost. Currently, hard carbon (HC) materials are considered commercially viable anode materials for SIBs due to their advantages, including larger capacity, low cost, low operating voltage, and inimitable microstructure. Among these materials, renewable biomass-derived hard carbon anodes are commonly used in SIBs. However, the reports about biomass hard carbon from basic research to industrial applications are very rare. In this paper, we focus on the research progress of biomass-derived hard carbon materials from the following perspectives: (1) sodium storage mechanisms in hard carbon; (2) optimization strategies for hard carbon materials encompassing design, synthesis, heteroatom doping, material compounding, electrolyte modulation, and presodiation; (3) classification of different biomass-derived hard carbon materials based on precursor source, a comparison of their properties, and a discussion on the effects of different biomass sources on hard carbon material properties; (4) challenges and strategies for practical of biomass-derived hard carbon anode in SIBs; and (5) an overview of the current industrialization of biomass-derived hard carbon anodes. Finally, we present the challenges, strategies, and prospects for the future development of biomass-derived hard carbon materials.

11.
J Phys Chem Lett ; 15(26): 6743-6749, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38912658

RESUMEN

Layered sodium transition-metal oxides generally encounter severe capacity decay and inferior rate performance during cycling, especially at a high state of charge. Herein, defect concentration is rationally modulated to explore the impact on electrochemical behavior in NaNi1/3Fe1/3Mn1/3O2 layered oxides. Bulk vacancies are increased through annealing in an oxygen-rich atmosphere, demonstrated by electron paramagnetic resonance measurement. It is found that the cathode with enriched oxygen vacancies exhibits significantly enhanced reversibility of redox reactions with a higher initial Coulombic efficiency of 90.0%. Furthermore, the reduced volume variations during the initial charge/discharge process are also confirmed by in situ X-ray diffraction. As a result, the oxygen-vacancy-rich cathode shows great cycling stability and superior rate performances. Also, full cells deliver a specific capacity of approximately 145.2 mAh g-1 at 0.5 C, with a high capacity retention of 78.3% after 100 cycles. This work presents a viable strategy for designing Na+ intercalated cathodes with a high-energy density.

12.
Angew Chem Int Ed Engl ; : e202410016, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896116

RESUMEN

Garnet solid-state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet-based solid-state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li-FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C-Li2O-LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C-Li2O-LiF|LLZTO and C-Li2O-LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li-FCD|LLZTO|Li-FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm-2 and 800 hours at 0.5 mA cm-2. Furthermore, the LFP|garnet|Li-FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite-free Li|garnet interface, laying the groundwork for future advancements in garnet-based solid-state batteries.

13.
ACS Nano ; 18(20): 13150-13163, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726816

RESUMEN

Layered sodium transition-metal (TM) oxides generally suffer from severe capacity decay and poor rate performance during cycling, especially at a high state of charge (SoC). Herein, an insight into failure mechanisms within high-voltage layered cathodes is unveiled, while a two-in-one tactic of charge localization and coherent structures is devised to improve structural integrity and Na+ transport kinetics, elucidated by density functional theory calculations. Elevated Jahn-Teller [Mn3+O6] concentration on the particle surface during sodiation, coupled with intense interlayer repulsion and adverse oxygen instability, leads to irreversible damage to the near-surface structure, as demonstrated by X-ray absorption spectroscopy and in situ characterization techniques. It is further validated that the structural skeleton is substantially strengthened through the electronic structure modulation surrounding oxygen. Furthermore, optimized Na+ diffusion is effectively attainable via regulating intergrown structures, successfully achieved by the Zn2+ inducer. Greatly, good redox reversibility with an initial Coulombic efficiency of 92.6%, impressive rate capability (86.5 mAh g-1 with 70.4% retention at 10C), and enhanced cycling stability (71.6% retention after 300 cycles at 5C) are exhibited in the P2/O3 biphasic cathode. It is believed that a profound comprehension of layered oxides will herald fresh perspectives to develop high-voltage cathode materials for sodium-ion batteries.

14.
Front Neurosci ; 18: 1368089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410159

RESUMEN

Long-and middle-wavelength cone photoreceptors, which are responsible for our visual acuity and color vision, comprise ~95% of our total cone population and are concentrated in the fovea of our retina. Previously, we characterized the disease mechanisms of the L/M-cone opsin missense mutations N94K, W177R, P307L, R330Q and G338E, all of which are associated with congenital blue cone monochromacy (BCM) or color-vision deficiency. Here, we used a similar viral vector-based gene delivery approach in M-opsin knockout mice to investigate the pathogenic consequences of the BCM or color-vision deficient associated L-cone opsin (OPN1LW) mutants K82E, P187S, and M273K. We investigated their subcellular localization, the pathogenic effects on cone structure, function, and cone viability. K82E mutants were detected predominately in cone outer segments, and its expression partially restored expression and correct localization of cone PDE6α' and cone transducin γ. As a result, K82E also demonstrated the ability to mediate cone light responses. In contrast, expression of P187S was minimally detected by either western blot or by immunohistochemistry, probably due to efficient degradation of the mutant protein. M273K cone opsin appeared to be misfolded as it was primarily localized to the cone inner segment and endoplasmic reticulum. Additionally, M273K did not restore the expression of cone PDE6α' and cone transducin γ in dorsal cone OS, presumably by its inability to bind 11-cis retinal. Consistent with the observed expression pattern, P187S and M273K cone opsin mutants were unable to mediate light responses. Moreover, expression of K82E, P187S, and M273K mutants reduced cone viability. Due to the distinct expression patterns and phenotypic differences of these mutants observed in vivo, we suggest that the pathobiological mechanisms of these mutants are distinct.

15.
Sci Bull (Beijing) ; 69(6): 772-783, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38310048

RESUMEN

Na4Fe3(PO4)2(P2O7) (NFPP) is currently drawing increased attention as a sodium-ion batteries (SIBs) cathode due to the cost-effective and NASICON-type structure features. Owing to the sluggish electron and Na+ conductivities, however, its real implementation is impeded by the grievous capacity decay and inferior rate capability. Herein, multivalent cation substituted microporous Na3.9Fe2.9Al0.1(PO4)2(P2O7) (NFAPP) with wide operation-temperature is elaborately designed through regulating structure/interface coupled electron/ion transport. Greatly, the derived Na vacancy and charge rearrangement induced by trivalent Al3+ substitution lower the ions diffusion barriers, thereby endowing faster electron transport and Na+ mobility. More importantly, the existing Al-O-P bonds strengthen the local environment and alleviate the volume vibration during (de)sodiation, enabling highly reversible valence variation and structural evolution. As a result, remarkable cyclability (over 10,000 loops), ultrafast rate capability (200 C), and exceptional all-climate stability (-40-60 °C) in half/full cells are demonstrated. Given this, the rational work might provide an actionable strategy to promote the electrochemical property of NFPP, thus unveiling the great application prospect of sodium iron mixed phosphate materials.

16.
Food Chem ; 443: 138584, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306903

RESUMEN

To explore the combination effects of plasma-activated water and dielectric barrier discharge (PAW-DBD) cold plasma treatment on the formation of volatile flavor and lipid oxidation in Asian sea bass (ASB), the volatile flavor compounds and lipid profiles were characterized by gas chromatography-ion mobility spectrometry and LC-MS-based lipidomics analyses. In total, 38 volatile flavor compound types were identified, and the PAW-DBD group showed the most kinds of volatile components with a significant (p < 0.05) higher content in aldehydes, ketones, and alcohols. A total of 1500 lipids was detected in lipidomics analysis, phosphatidylcholine was the most followed by triglyceride. The total saturated fatty acids content in PAW-DBD group increased by 105.02 µg/g, while the total content of unsaturated fatty acids decreased by 275.36 µg/g. It can be concluded that the PAW-DBD processing increased both the types and amounts of the volatile flavor in ASB and promoted lipid oxidation by altering lipid profiles.


Asunto(s)
Lubina , Gases em Plasma , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Agua , Ácidos Grasos
17.
BMC Urol ; 24(1): 6, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172792

RESUMEN

BACKGROUND: Bladder cancer (BLCA) is a prevalent malignancy affecting the urinary system and poses a significant burden in terms of both incidence and mortality rates on a global scale. Among all BLCA cases, non-muscle invasive bladder cancer constitutes approximately 75% of the total. In recent years, the concept of ferroptosis, an iron-dependent form of regulated cell death marked by the accumulation of lipid peroxides, has captured the attention of researchers worldwide. Nevertheless, the precise involvement of ferroptosis-related genes (FRGs) in the anti-BLCA response remains inadequately elucidated. METHODS: The integration of BLCA samples from the TCGA and GEO datasets facilitated the quantitative evaluation of FRGs, offering potential insights into their predictive capabilities. Leveraging the wealth of information encompassing mRNAsi, gene mutations, CNV, TMB, and clinical features within these datasets further enriched the analysis, augmenting its robustness and reliability. Through the utilization of Lasso regression, a prediction model was developed, enabling accurate prognostic assessments within the context of BLCA. Additionally, co-expression analysis shed light on the complex relationship between gene expression patterns and FRGs, unraveling their functional relevance and potential implications in BLCA. RESULTS: FRGs exhibited increased expression levels in the high-risk cohort of BLCA patients, even in the absence of other clinical indicators, suggesting their potential as prognostic markers. GSEA revealed enrichment of immunological and tumor-related pathways specifically in the high-risk group. Furthermore, notable differences were observed in immune function and m6a gene expression between the low- and high-risk groups. Several genes, including MYBPH, SOST, SPRR2A, and CRNN, were found to potentially participate in the oncogenic processes underlying BLCA. Additionally, CYP4F8, PDZD3, CRTAC1, and LRTM1 were identified as potential tumor suppressor genes. Significant discrepancies in immunological function and m6a gene expression were observed between the two risk groups, further highlighting the distinct molecular characteristics associated with different prognostic outcomes. Notably, strong correlations were observed among the prognostic model, CNVs, SNPs, and drug sensitivity profiles. CONCLUSIONS: FRGs are associated with the onset and progression of BLCA. A FRGs signature offers a viable alternative to predict BLCA, and these FRGs show a prospective research area for BLCA targeted treatment in the future.


Asunto(s)
Ferroptosis , Neoplasias de la Vejiga Urinaria , Humanos , Ferroptosis/genética , Pronóstico , Estudios Prospectivos , Reproducibilidad de los Resultados , Neoplasias de la Vejiga Urinaria/genética , Microambiente Tumoral/genética , Proteínas de Unión al Calcio , Proteínas Ricas en Prolina del Estrato Córneo
18.
Foods ; 13(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38201193

RESUMEN

Cold plasma (CP) is a non-thermal preservation technology that has been successfully used to decontaminate and extend the shelf life of aquatic products. However, the preservation effect of CP treatment is determined by several factors, including voltage, time, and gas compositions. Therefore, this study aimed to investigate the effects of gas composition (GasA: 10% O2, 50% N2, 40% CO2; GasB: air; GasC: 30% O2, 30% N2, 40% CO2) on the lipid oxidation of tilapia fillets treated after CP treatment. Changes in the lipid oxidation values, the percentages of fatty acids, and sensory scores were studied during 8 d of refrigerator storage. The results showed that the CP treatment significantly increased all the primary and secondary lipid oxidation values measured in this study, as well as the percentages of saturated fatty acids, but decreased the percentages of unsaturated fatty acids, especially polyunsaturated fatty acids. The lipid oxidation values were significantly increased in the GasC-CP group. After 8 d, clearly increased percentages of saturated fatty acids, a low level of major polyunsaturated fatty acids (especially linoleic (C18:2n-6)), and a decrease in the percentages of eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) were found in GasC-CP; that is, the serious oxidation of lipids was found in the high O2 concentration group. In addition, the sensory score was also lower than that of the hypoxia CP group. Therefore, high O2 concentrations can enhance lipid oxidation and the changes in the fatty acid concentration. Controlling the O2 concentration is reasonable to limit the degree to which lipids are oxidized in tilapia after the in-package CP treatment.

19.
Food Res Int ; 177: 113866, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225136

RESUMEN

A lipidomics approach based on liquid chromatography-mass spectrometry was employed to investigate alterations in lipid profiles within the muscles of Asian sea bass (ASB) (Lates calcarifer) post-treatment with plasms-activated water (PAW). Lipidomics studies detected 1500 diverse lipid types in ASB muscles; the phosphatidylcholine (PC) lipid subclass constituted the highest number of lipids (21.07 %), followed by triglycerides (TGs, 20.53 %) and phosphatidylethanolamine (PE, 12.73 %). Comparative analysis between PAW-treated ASB and raw ASB revealed the presence of differentially abundant lipids, with 48 lipids accumulating at high levels and 92 at low levels. Pathway enrichment analysis identified a total of seven lipid-related metabolic pathways; glycerophospholipid metabolism emerged as the predominant pathway. Furthermore, the content of saturated fatty acids in PAW-treated ASB increased from 1059.81 µg/g (raw ASB) to 1099.77 µg/g. Conversely, the content of monounsaturated and polyunsaturated fatty acids decreased from 645.81 µg/g and 875.02 µg/g to 640.80 µg/g and 825.25 µg/g, respectively. Collectively, these results indicate significant alterations in ASB lipid profiles following PAW treatment, establishing a theoretical foundation for understanding the mechanism involved in promoting lipid oxidation.


Asunto(s)
Lubina , Perciformes , Animales , Lubina/metabolismo , Lipidómica , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ácidos Grasos/metabolismo
20.
Plants (Basel) ; 13(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256850

RESUMEN

Cadmium (Cd) is a highly toxic heavy metal that causes serious damage to plant and human health. Phytolacca acinosa Roxb. has a large amount of aboveground biomass and a rapid growth rate, and it has been identified as a novel type of Cd hyperaccumulator that can be harnessed for phytoremediation. However, the molecular mechanisms underlying the response of P. acinosa to Cd2+ stress remain largely unclear. In this study, the phenotype, biochemical, and physiological traits of P. acinosa seeds and seedlings were analyzed under different concentrations of Cd2+ treatments. The results showed higher Cd2+ tolerance of P. acinosa compared to common plants. Meanwhile, the Cd2+ content in shoots reached 449 mg/kg under 10 mg/L Cd2+ treatment, which was obviously higher than the threshold for Cd hyperaccumulators. To investigate the molecular mechanism underlying the adaptability of P. acinosa to Cd stress, RNA-Seq was used to examine transcriptional responses of P. acinosa to Cd stress. Transcriptome analysis found that 61 genes encoding TFs, 48 cell wall-related genes, 35 secondary metabolism-related genes, 133 membrane proteins and ion transporters, and 96 defense system-related genes were differentially expressed under Cd2+ stress, indicating that a series of genes were involved in Cd2+ stress, forming a complex signaling regulatory mechanism. These results provide new scientific evidence for elucidating the regulatory mechanisms of P. acinosa response to Cd2+ stress and new clues for the molecular breeding of heavy metal phytoremediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA