Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Fish Shellfish Immunol ; : 109739, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960108

RESUMEN

Lauric acid (LA), a saturated fatty acid with 12 carbon atoms, is widely regarded as a healthy fatty acid that plays an important role in disease resistance and improving immune physiological function. The objective of this study was to determine the effects of dietary lauric acid on the growth performance, antioxidant capacity, non-specific immunity and intestinal microbiology, and evaluate the potential of lauric acids an environmentally friendly additive in swimming crab (Portunus trituberculatus) culture. A total of 192 swimming crabs with an initial body weight of 11.68 ± 0.02 g were fed six different dietary lauric acid levels, the analytical values of lauric acid were 0.09, 0.44, 0.80, 1.00, 1.53, 2.91 mg/g, respectively. There were four replicates per treatment and 8 juvenile swimming crabs per replicate. The results indicated that final weight, percent weight gain, specific growth rate, survival and feed intake were not significantly affected by dietary lauric acid levels; however, crabs fed diets with 0.80 and 1.00 mg/g lauric acid showed the lowest feed efficiency among all treatments. Proximate composition in hepatopancreas and muscle were not significantly affected by dietary lauric acid levels. The highest activities of amylase and lipase in hepatopancreas and intestine were found at crabs fed diet with 0.80 mg/g lauric acid (P<0.05), the activity of carnitine palmityl transferase (CPT) in hepatopancreas and intestine significantly decreased with dietary lauric acid levels increasing from 0.09 to 2.91 mg/g (P<0.05). The lowest concentration of glucose and total protein and the activity of alkaline phosphatase in hemolymph were observed at crabs fed diets with 0.80 and 1.00 mg/g lauric acid among all treatments. The activity of GSH-Px in hepatopancreas significantly increased with dietary lauric acid increasing from 0.09 to 1.53 mg/g, MDA in hepatopancreas and hemolymph was not significantly influenced by dietary lauric acid levels. The highest expression of cat and gpx in hepatopancreas were exhibited in crabs fed diet with 1.00 mg/g lauric acid, however, the expression of genes related to the inflammatory signaling pathway (relish, myd88, traf6, nf-κB ) were up-regulated in the hepatopancreas with dietary lauric acid levels increasing from 0.09 to 1.00 mg/g, moreover, the expression of genes related to intestinal inflammatory, immune and antioxidant were significantly affected by dietary lauric acid levels (P<0.05). Crabs fed diet without lauric acid supplementation exhibited higher lipid drop area in hepatopancreas than those fed the other diets (P<0.05). The expression of genes related to lipid catabolism was up-regulated, however, and the expression of genes related to lipid synthesis was down-regulated in the hepatopancreas of crabs fed with 0.80 mg/g lauric acid. Lauric acid improved hepatic tubular integrity, and enhanced intestinal barrier function by increasing peritrophic membrane (PM) thickness and upregulating the expression of structural factors (per44, zo-1) and intestinal immunity-related genes. In addition, dietary 1.00 mg/g lauric acid significantly improved the microbiota composition of the intestinal, increased the abundance of Actinobacteria and Rhodobacteraceae, and decreased the abundance of Vibrio, thus maintaining the microbiota balance of the intestine. The correlation analysis showed that there was a relationship between intestinal microbiota and immune-antioxidant function. In conclusion, the dietary 1.00 mg/g lauric acid is beneficial to improve the antioxidant capacity and intestinal health of swimming crab.

3.
Cancer Biol Ther ; 25(1): 2366451, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38857055

RESUMEN

BACKGROUND: Chronic stress can induce stress-related hormones; norepinephrine (NE) is considered to have the highest potential in cancer. NE can stimulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is associated with vascular endothelial growth factor (VEGF) secretion and tumor angiogenesis. However, the underlying mechanisms are poorly understood. METHODS: Tumor-bearing mice were subjected to chronic restraint stress and treated with normal saline, human monoclonal VEGF-A neutralizing antibody bevacizumab, or ß-adrenergic receptor (ß-AR) antagonist (propranolol). Tumor growth and vessel density were also evaluated. Human colorectal adenocarcinoma cells were treated with NE, propranolol, or the inhibitor of transforming growth factor-ß (TGF-ß) receptor Type I kinase (Ly2157299) in vitro. TGF-ß1 in mouse serum and cell culture supernatants was quantified using ELISA. The expression of HIF-1α was measured using Real time-PCR and western blotting. Cell migration and invasion were tested. RESULTS: Chronic restraint stress attenuated the efficacy of bevacizumab and promoted tumor growth and angiogenesis in a colorectal tumor model. Propranolol blocked this effect and inhibited TGF-ß1 elevation caused by chronic restraint stress or NE. NE upregulated HIF-1α expression, which was reversed by propranolol or Ly2157299. Propranolol and Ly2157199 blocked NE-stimulated cancer cell migration and invasion. CONCLUSIONS: Our results demonstrate the effect of NE on tumor angiogenesis and the critical role of TGF-ß1 signaling during this process. In addition, ß-AR/TGF-ß1 signaling/HIF-1α/VEGF is a potential signaling pathway. This study also indicates that psychosocial stress might be a risk factor which weakens the efficacy of anti-angiogenic therapy.


Asunto(s)
Bevacizumab , Neoplasias Colorrectales , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neovascularización Patológica , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Animales , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Neovascularización Patológica/metabolismo , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Propranolol/farmacología , Línea Celular Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo , Masculino , Movimiento Celular , Norepinefrina/farmacología , Norepinefrina/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Angiogénesis , Pirazoles , Quinolinas
4.
Eur J Cardiothorac Surg ; 65(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38833686

RESUMEN

OBJECTIVES: The causal association between immune cell traits and aortic aneurysm remains unknown. METHODS: We performed a bidirectional two-sample Mendelian randomization analysis to explore the causality between 731 immune cell characteristics and the risk of abdominal aortic aneurysm and thoracic aortic aneurysms through publicly available genetic data, respectively. To examine heterogeneity and horizontal pleiotropy, Cochran's Q test and MR-Egger intercept were utilized. Additionally, multivariable Mendelian randomization analysis and meta-analysis were performed in further analysis. RESULTS: We found that 20 immune phenotypes had a suggestive causality on abdominal aortic aneurysm, and 15 immune phenotypes had a suggestive causal effect on thoracic aortic aneurysm. After further false discovery rate adjustment (q value <0.1), CD20 on IgD+ CD38- B cell (q = 0.053) and CD127 on CD28+ CD4+ T cell (q = 0.096) were associated with an increased risk of abdominal aortic aneurysm, respectively, indicating a significant causality between them. After adjusting for smoking, there is still statistical significance between CD127 on CD28+ CD4+ T cell and abdominal aortic aneurysm. However, after adjusting for lipids, no statistical significance can be observed between CD127 on CD28+ CD4+ T cells and abdominal aortic aneurysm. Furthermore, there is still statistical significance between CD20 on IgD+ CD38- B cells and abdominal aortic aneurysm after adjusting for lipids and smoking, which was further identified by meta-analysis. CONCLUSIONS: We found a causal association between immune cell traits and aortic aneurysm by genetic methods, thus providing new avenues for future mechanism studies.


Asunto(s)
Aneurisma de la Aorta Abdominal , Análisis de la Aleatorización Mendeliana , Humanos , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/inmunología , Aneurisma de la Aorta Abdominal/epidemiología , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/inmunología , Aneurisma de la Aorta Torácica/epidemiología , Factores de Riesgo , Fenotipo , Predisposición Genética a la Enfermedad
5.
Vaccines (Basel) ; 12(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38932414

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease of infants and older people. There is an urgent need for safe and effective vaccines against RSV infection. In this study, we analyzed the effects of the immune response and protection with the RSV recombinant G protein extracellular domain (Gecto) combined with various adjuvants as novel subunit vaccines in mice. All groups receiving RSV Gecto combined with adjuvants exhibited robust humoral and cellular immunity compared to those receiving an adjuvant alone or inactivated RSV vaccine. The greatest effect was observed in mice receiving Gecto combined with a CpG ODN + Alum salt adjuvant, resulting in the highest production of neutralizing antibodies against both RSV A and B subtypes, G-specific IgG and IFN-γ production in splenocytes, and interleukin-2 and interferon-γ expression in CD4+ T cells. Significant humoral and cellular immune responses were observed in mice immunized with Gecto combined with AddaS03™ or cyclosporin A adjuvants. The vaccine containing the AddaS03™ adjuvant showed significantly high expression of interleukin-4 in CD4+ T cells. Cross-protection against a challenge with either RSV A or B subtypes was observed in the Gecto plus adjuvant groups, resulting in a significant decrease in viral load and reduced pathological damage in the mouse lungs. These findings offer valuable insights into the development and application of recombinant RSV G-subunit vaccines with adjuvants.

6.
Cell Biochem Biophys ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839699

RESUMEN

Iguratimod (T-614) is a compound widely used as anti-rheumatic drug. This study investigated the effect and underlying mechanism of T-614 on experimental Sjögren's syndrome (ESS). ESS mice model was established by injection of submandibular gland protein. Mice were randomly divided into control, experimental Sjögren's syndrome (ESS), ESS + T-614 (10 mg/kg), ESS + T-614 (20 mg/kg), and ESS + T-614 (30 mg/kg) groups. Human submandibular gland (HSG) were cultured with 0, 0.5, 5, or 50 µg/ml T-614 in the absence or presence of interferon-α (IFN-α). Haematoxylin and eosin (H&E) and cytokine levels were used to detect immune cells activation in submandibular glands. Apoptosis in submandibular glands tissues and cells was determined by TUNEL and flow cytometry. Apoptosis and NLRP3 inflammasome-related proteins were detected by western blotting. T-614 treatment attenuated submandibular gland damage in ESS mice. T-614 administration inhibited submandibular gland cell apoptosis in ESS mice. Furthermore, T-614 blocked inflammatory factor levels and NLRP3 inflammasome activation in the submandibular glands. In vitro, results corroborated that T-614 could protect HSG cells from IFN-α-induced cell apoptosis and inflammation by inhibiting NLRP3 inflammasome activation. Our results expounded that T-614 alleviated ESS by inhibiting NLRP3 inflammasome activation.

7.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771245

RESUMEN

Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Imagen por Resonancia Magnética , Descanso , Humanos , Masculino , Femenino , Adulto , Circulación Cerebrovascular/fisiología , Reproducibilidad de los Resultados , Descanso/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/irrigación sanguínea , Adulto Joven , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Desempeño Psicomotor/fisiología , Ritmo Circadiano/fisiología , Nivel de Alerta/fisiología
8.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790627

RESUMEN

This study aimed to assess the influence of varying dietary levels of astaxanthin (AST) on the growth, antioxidant capacity and lipid metabolism of juvenile swimming crabs. Six diets were formulated to contain different AST levels, and the analyzed concentration of AST in experimental diets were 0, 24.2, 45.8, 72.4, 94.2 and 195.0 mg kg-1, respectively. Juvenile swimming crabs (initial weight 8.20 ± 0.01 g) were fed these experimental diets for 56 days. The findings indicated that the color of the live crab shells and the cooked crab shells gradually became red with the increase of dietary AST levels. Dietary 24.2 mg kg-1 astaxanthin significantly improved the growth performance of swimming crab. the lowest activities of glutathione (GSH), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and peroxidase (POD) were found in crabs fed without AST supplementation diet. Crabs fed diet without AST supplementation showed lower lipid content and the activity of fatty acid synthetase (FAS) in hepatopancreas than those fed diets with AST supplementation, however, lipid content in muscle and the activity of carnitine palmitoyl transferase (CPT) in hepatopancreas were not significantly affected by dietary AST levels. And it can be found in oil red O staining that dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas. Crabs fed diet with 195.0 mg kg-1 AST exhibited lower expression of ampk, foxo, pi3k, akt and nadph in hepatopancreas than those fed the other diets, however, the expression of genes related to antioxidant such as cMn-sod, gsh-px, cat, trx and gst in hepatopancreas significantly down-regulated with the increase of dietary AST levels. In conclusion, dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas and im-proved the antioxidant and immune capacity of hemolymph.

9.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 697-708, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591121

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers in the world, which is frequently diagnosed at a late stage. HCC patients have a poor prognosis due to the lack of an efficacious therapeutic strategy. Approved drug repurposing is a way for accelerating drug discovery and can significantly reduce the cost of drug development. Carfilzomib (CFZ) is a second-generation proteasome inhibitor, which is highly efficacious against multiple myeloma and has been reported to possess potential antitumor activities against multiple cancers. However, the underlying mechanism of CFZ on HCC is still unclear. Here, we show that CFZ inhibits the proliferation of HCC cells through cell cycle arrest at the G2/M phase and suppresses the migration and invasion of HCC cells by inhibiting epithelial-mesenchymal transition. We also find that CFZ promotes reactive oxygen species production to induce endoplasmic reticulum (ER) stress and activate JNK/p38 MAPK signaling in HCC cells, thus inducing cell death in HCC cells. Moreover, CFZ significantly inhibits HCC cell growth in a xenograft mouse model. Collectively, our study elucidates that CFZ impairs mitochondrial function and activates ER stress and JNK/p38 MAPK signaling, thus inhibiting HCC cell and tumor growth. This indicates that CFZ has the potential as a therapeutic drug for HCC.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Estrés del Retículo Endoplásmico , Neoplasias Hepáticas , Oligopéptidos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Oligopéptidos/farmacología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ratones , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones Endogámicos BALB C
10.
Int Immunopharmacol ; 132: 111991, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581996

RESUMEN

OBJECTIVES: Acute lung injury (ALI) is a highly inflammatory condition with the involvement of M1 alveolar macrophages (AMs) polarization, eventually leading to the development of non-cardiogenic edema in alveolar and interstitial regions, accompanied by persistent hypoxemia. Given the significant mortality rate associated with ALI, it is imperative to investigate the underlying mechanisms of this condition so as to identify potential therapeutic targets. The therapeutic effects of the inhibition of bromodomain containing protein 4 (BRD4), an epigenetic reader, has been proven with high efficacy in ameliorating various inflammatory diseases through mediating immune cell activation. However, little is known about the therapeutic potential of BRD4 degradation in acute lung injury. METHODS: This study aimed to assess the protective efficacy of ARV-825, a novel BRD4-targeted proteolysis targeting chimera (PROTAC), against ALI through histopathological examination in lung tissues and biochemical analysis in bronchoalveolar lavage fluid (BALF). Additionally, the underlying mechanism by which BRD4 regulated M1 AMs was elucidated by using CUT & Tag assay. RESULTS: In this study, we found the upregulation of BRD4 in a lipopolysaccharide (LPS)-induced ALI model. Furthermore, we observed that intraperitoneal administration of ARV-825, significantly alleviated LPS-induced pulmonary pathological changes and inflammatory responses. These effects were accompanied by the suppression of M1 AMs. In addition, our findings revealed that the administration of ARV-825 effectively suppressed M1 AMs by inhibiting the expression of IRF7, a crucial transcriptional factor involved in M1 macrophages. CONCLUSION: Our study suggested that targeting BRD4 using ARV-825 is a potential therapeutic approach for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Proteínas que Contienen Bromodominio , Lipopolisacáridos , Macrófagos Alveolares , Factores de Transcripción , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inmunología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Humanos , Proteolisis/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad , Activación de Macrófagos/efectos de los fármacos
11.
Aging (Albany NY) ; 16(7): 6135-6146, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38546384

RESUMEN

Dysfunction of tight junction proteins-associated damage to the blood-brain barrier (BBB) plays an important role in the pathogenesis of ischemic stroke. Lifibrate, an inhibitor of cholinephosphotransferase (CPT), has been used as an agent for serum lipid lowering. However, the protective effects of Lifibrate in ischemic stroke and the underlying mechanism have not been clearly elucidated. Here, we employed an in vivo mice model of MCAO and an OGD/R model in vitro. In the mice models, neurological deficit scores and infarct volume were assessed. Evans Blue solution was used to detect the BBB permeability. The TEER was examined to determine brain endothelial monolayer permeability. Here, we found that Lifibrate improved neurological dysfunction in stroke. Additionally, increased BBB permeability during stroke was significantly ameliorated by Lifibrate. Correspondingly, the reduced expression of the tight junction protein ZO-1 was restored by Lifibrate at both the mRNA and protein levels. Using an in vitro model, we found that Lifibrate ameliorated OGD/R-induced injury in human bEnd.3 brain microvascular endothelial cells by increasing cell viability but reducing the release of LDH. Importantly, Lifibrate suppressed the increase in endothelial monolayer permeability and the reduction in TEER induced by OGD/R via the rescue of ZO-1 expression. Mechanistically, Lifibrate blocked activation of the MLCK/ p-MLC signaling pathway in OGD/R-stimulated bEnd.3 cells. In contrast, overexpression of MLCK abolished the protective effects of Lifibrate in endothelial monolayer permeability, TEER, as well as the expression of ZO-1. Our results provide a basis for further investigation into the neuroprotective mechanism of Lifibrate during stroke.


Asunto(s)
Barrera Hematoencefálica , Accidente Cerebrovascular Isquémico , Proteína de la Zonula Occludens-1 , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Ratones , Masculino , Humanos , Quinasa de Cadena Ligera de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Línea Celular , Infarto de la Arteria Cerebral Media/metabolismo
12.
Neurosci Biobehav Rev ; 160: 105607, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428473

RESUMEN

Risk-taking is a common, complex, and multidimensional behavior construct that has significant implications for human health and well-being. Previous research has identified the neural mechanisms underlying risk-taking behavior in both adolescents and adults, yet the differences between adolescents' and adults' risk-taking in the brain remain elusive. This study firstly employs a comprehensive meta-analysis approach that includes 73 adult and 20 adolescent whole-brain experiments, incorporating observations from 1986 adults and 789 adolescents obtained from online databases, including Web of Science, PubMed, ScienceDirect, Google Scholar and Neurosynth. It then combines functional decoding methods to identify common and distinct brain regions and corresponding psychological processes associated with risk-taking behavior in these two cohorts. The results indicated that the neural bases underlying risk-taking behavior in both age groups are situated within the cognitive control, reward, and sensory networks. Subsequent contrast analysis revealed that adolescents and adults risk-taking engaged frontal pole within the fronto-parietal control network (FPN), but the former recruited more ventrolateral area and the latter recruited more dorsolateral area. Moreover, adolescents' risk-taking evoked brain area activity within the ventral attention network (VAN) and the default mode network (DMN) compared with adults, consistent with the functional decoding analyses. These findings provide new insights into the similarities and disparities of risk-taking neural substrates underlying different age cohorts, supporting future neuroimaging research on the dynamic changes of risk-taking.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adulto , Humanos , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Lóbulo Frontal , Mapeo Encefálico , Neuroimagen , Asunción de Riesgos
13.
Sensors (Basel) ; 24(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38544053

RESUMEN

The carbon-fiber-reinforced polymer (CFRP) bending structure is widely used in aviation. The emergence and spread of delamination damage will decrease the safety of in-service bending structures. Lamb waves can effectively identify delamination damage as a high-damage-sensitivity detection tool. For this present study, the signal difference coefficient (SDC) was introduced to quantify delamination damage and evaluate the sensitivity of A0-mode and S0-mode Lamb waves to delamination damage. The simulation results show that compared with the S0-mode Lamb wave, the A0-mode Lamb wave exhibits higher delamination damage sensitivity. The delamination damage can be quantified based on the strong correlation between the SDC and the delamination damage size. The control effect of the linear array PZT phase time-delay method on the Lamb wave mode was investigated by simulation. The phase time-delay method realizes the generation of a single-mode Lamb wave, which can separately excite the A0-mode and S0-mode Lamb wave to identify delamination damage of different sizes. The A0-mode Lamb wave was excited by the developed one-dimensional miniaturized linear comb transducer (LCT), which was used to conduct the detection experiment on the CFRP bending plate with delamination damage sizes of Φ6.0 mm, Φ10.0 mm, and Φ15.0 mm. The experimental results verify the correctness of the simulation. According to the Hermite interpolation results of the finite-element simulation data, the relationship between the delamination damage size and the SDC was fitted by the Gaussian function and Rational function, which can accurately quantify the delamination damage. The absolute error of the delamination damage quantification with Gaussian and Rational fitting expression does not exceed 0.8 mm and 0.7 mm, and the percentage error is not more than 8% and 7%. The detection and signal processing methods employed in the present research are easy to operate and implement, and accurate delamination damage quantification results have been obtained.

14.
Front Neurol ; 15: 1319962, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481944

RESUMEN

This report presents a case of Charcot-Marie-Tooth dominant intermediate D (CMTDID), a rare subtype of Charcot-Marie-Tooth disease, in a 52 years-old male patient. The patient exhibited mobility impairment, foot abnormalities (pes cavus), and calf muscle atrophy. Whole exome sequencing and Sanger sequencing suggested that a novel variant (NM_000530.8, c.145C>A/p.His49Asn) of MPZ may be the genetic lesion in the patient. The bioinformatic program predicted that the new variant (p.His49Asn), located at an evolutionarily conserved site of MPZ, was neutral. Our study expands the variant spectrum of MPZ and the number of identified CMTDID patients, contributing to a better understanding of the relationship between MPZ and CMTDID.

15.
Adv Mater ; 36(19): e2309940, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373410

RESUMEN

The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe7S8 core is enveloped snugly by a curved MoS2 dome shell (Fe7S8@MoS2), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe7S8 core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.

16.
J Cardiothorac Surg ; 19(1): 61, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321532

RESUMEN

Fallot-type absent pulmonary valve is a rare and complex congenital heart disease. Repair surgery for this condition during the neonatal period has a mortality rate of over 50%. We reported a neonate with Fallot-type absent pulmonary valve and occlusion of the left main bronchus. The patient's pulmonary artery had unusual anatomy of a type that has not previously been reported. This case report outlines a successful treatment strategy for patients with complex congenital heart disease and airway occlusion during the neonatal period and the effect of these unusual anatomical conditions on postoperative outcomes.


Asunto(s)
Atresia Pulmonar , Válvula Pulmonar , Tetralogía de Fallot , Recién Nacido , Humanos , Válvula Pulmonar/cirugía , Tetralogía de Fallot/cirugía , Arteria Pulmonar/cirugía , Bronquios
17.
Talanta ; 272: 125759, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38350248

RESUMEN

Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.


Asunto(s)
Técnicas Biosensibles , ADN , ADN/genética , Hibridación de Ácido Nucleico/métodos , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Catálisis , Límite de Detección
18.
BMC Pediatr ; 24(1): 49, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229077

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection has many neurological manifestations, and its effects on the nervous system are increasingly recognized. There has been no systematic analysis of electroencephalography (EEG) characteristics in children exhibiting neurological symptoms of Coronavirus disease 2019 (COVID-19). The primary aim of this study was to describe the EEG characteristics caused by COVID-19 infection in children who were showing neurological symptoms and to assess the relationship between COVID-19-related EEG changes and clinical features in these children. METHOD: This study included 125 pediatric patients infected with SARS-CoV2 and showing neurological symptoms, and their continuous EEG was recorded. In addition, the demographic and clinical characteristics of these patients were analyzed and the correlation between the two was investigated. RESULTS: Abnormal EEG findings were detected in 31.20% (N = 39) of the patients. Abnormal discharges (43.59%) were the most common EEG abnormalities, followed by background abnormalities (41.03%). The proportion of patients diagnosed with febrile seizure was higher in the normal EEG group than in the abnormal EEG group (P = 0.002), while the opposite was true for epilepsy and encephalitis/encephalopathy (P = 0.016 and P = 0.003, respectively). The independent associated factors of abnormal EEG were age and total length of stay (P < 0.001 and P = 0.003, respectively). Non-specific EEG abnormalities were found in COVID-19-related encephalitis/encephalopathy. CONCLUSION: Our study corroborated that a small group of pediatric patients infected by COVID-19 and showing neurological symptoms may exhibit abnormal EEG. This study could help improve the understanding of clinical and EEG characteristics in children with COVID-19 and inform triage policies in other hospitals during the COVID-19 pandemic.


Asunto(s)
Encefalopatías , COVID-19 , Encefalitis , Humanos , Niño , SARS-CoV-2 , Pandemias , ARN Viral , Electroencefalografía
19.
CNS Neurosci Ther ; 30(3): e14178, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949617

RESUMEN

AIMS: Idiopathic Normal pressure hydrocephalus (iNPH) is a neurodegenerative disease characterized by gait disturbance, dementia, and urinary dysfunction. The neural network mechanisms underlying this phenomenon is currently unknown. METHODS: To investigate the resting-state functional connectivity (rs-FC) abnormalities of iNPH-related brain connectivity from static and dynamic perspectives and the correlation of these abnormalities with clinical symptoms before and 3-month after shunt. We investigated both static and dynamic functional network connectivity (sFNC and dFNC, respectively) in 33 iNPH patients and 23 healthy controls (HCs). RESULTS: The sFNC and dFNC of networks were generally decreased in iNPH patients. The reduction in sFNC within the default mode network (DMN) and between the somatomotor network (SMN) and visual network (VN) were related to symptoms. The temporal properties of dFNC and its temporal variability in state-4 were sensitive to the identification of iNPH and were correlated with symptoms. The temporal variability in the dorsal attention network (DAN) increased, and the average instantaneous FC was altered among networks in iNPH. These features were partially associated with clinical symptoms. CONCLUSION: The dFNC may be a more sensitive biomarker for altered network function in iNPH, providing us with extra information on the mechanisms of iNPH.


Asunto(s)
Hidrocéfalo Normotenso , Trastornos del Movimiento , Enfermedades Neurodegenerativas , Humanos , Hidrocéfalo Normotenso/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Cabeza , Imagen por Resonancia Magnética , Mapeo Encefálico
20.
Psychophysiology ; 61(4): e14465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37905305

RESUMEN

Sleep loss impacts a broad range of brain and cognitive functions. However, how sleep deprivation affects risky decision-making remains inconclusive. This study used functional MRI to examine the impact of one night of total sleep deprivation (TSD) on risky decision-making behavior and the underlying brain responses in healthy adults. In this study, we analyzed data from N = 56 participants in a strictly controlled 5-day and 4-night in-laboratory study using a modified Balloon Analogue Risk Task. Participants completed two scan sessions in counter-balanced order, including one scan during rested wakefulness (RW) and another scan after one night of TSD. Results showed no differences in participants' risk-taking propensity and risk-induced activation between RW and TSD. However, participants showed significantly reduced neural activity in the anterior cingulate cortex and bilateral insula for loss outcomes, and in bilateral putamen for win outcomes during TSD compared with RW. Moreover, risk-induced activation in the insula negatively correlated with participants' risk-taking propensity during RW, while no such correlations were observed after TSD. These findings suggest that sleep loss may impact risky decision-making by attenuating neural responses to decision outcomes and impairing brain-behavior associations.


Asunto(s)
Toma de Decisiones , Privación de Sueño , Adulto , Humanos , Toma de Decisiones/fisiología , Encéfalo , Cognición , Giro del Cíngulo , Imagen por Resonancia Magnética , Asunción de Riesgos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...