Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(3): e0174040, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28306726

RESUMEN

In China, Fusarium head blight is caused mainly by the Fusarium graminearum species complex (FGSC), which produces trichothecene toxins. The FGSC is divided into three chemotypes: 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and nivalenol (NIV). In order to predict the geographical changes in the distribution of these chemotype populations in major winter wheat-producing areas in China, the biological characteristics of twenty randomly selected isolates from each of the three chemotypes were studied. No significant difference was exhibited in the growth rate of 3-ADON, 15-ADON, and NIV isolates at 15°C. At 20°C and 25°C, the growth rate of 15-ADON isolates was the highest. At 30°C, the growth rate of NIV and 3-ADON isolates was significantly higher than that of 15-ADON isolates. The 15-ADON isolates produced the highest quantities of perithecia and two to three days earlier than the other two populations at each temperature, and released more ascospores at 18°C. The aggressiveness test on wheat seedlings and ears indicated there was no significant difference between the 3-ADON and 15-ADON isolates. However, the aggressiveness of NIV isolates was significantly lower than that of the 3-ADON and 15-ADON isolates. The DON content in grains from heads inoculated with the 3-ADON isolates was higher than the content of 15-ADON and NIV isolates. The results showed that 15-ADON population had the advantage in perithecia formation and ascospore release, and the 3-ADON population produced more DON in wheat grains. We suggested that distribution of these three chemotype populations may be related to these biological characteristics.


Asunto(s)
Fusarium/genética , Fusarium/fisiología , Triticum/crecimiento & desarrollo , China , Fusarium/crecimiento & desarrollo , Triticum/microbiología
2.
Pest Manag Sci ; 73(5): 896-903, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27415408

RESUMEN

BACKGROUND: Thifluzamide, a succinate dehydrogenase inhibitor (SDHI) fungicide, is a promising fungicide for controlling wheat sharp eyespot (WSE). WSE is caused by Rhizoctonia cerealis. Information on the resistance mechanism of this pathogen to thifluzamide remains unavailable. RESULTS: We used selective reculturing and UV mutagenesis to generate thifluzamide-resistant mutants. Thifluzamide-resistant mutants were only generated through UV mutagenesis. Sequence analysis of succinate dehydrogenase (Sdh) genes revealed that two mutants had no mutation in RCSdhB, RCSdhC and RCSdhD, and the other 18 mutants all had at least one mutation in RCSdhB, RCSdhC or RCSdhD, either in a homozygous or heterozygous state. The majority of mutants included either RCSdhD-H116Y or RCSdhC-H139Y. They showed slight resistance to boscalid, bixafen and penflufen. Only one mutant possessed RCSdhB-H246Y, and it showed medium resistance to boscalid and penflufen and a slight resistance to bixafen. All the thifluzamide mutants were sensitive to flutolanil. Compared with their parental isolates, these mutants present no or minor fitness penalties. CONCLUSION: Homozygous and heterozygous point mutations in the succinate dehydrogenase subunits b, c and d of R. cerealis may be involved in thifluzamide resistance. © 2016 Society of Chemical Industry.


Asunto(s)
Anilidas/farmacología , Heterocigoto , Homocigoto , Mutación Puntual , Rhizoctonia/efectos de los fármacos , Rhizoctonia/genética , Succinato Deshidrogenasa/genética , Tiazoles/farmacología , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Subunidades de Proteína/genética , Rhizoctonia/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...