Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(35): 48561-48575, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031314

RESUMEN

In this study, magnetic coconut shell biochar loaded with spherical Fe3O4 and γ-Fe2O3 particles was successfully synthesized using a chemical coprecipitation method. The magnetic biochar exhibited a good magnetic separability and environmental security. The maximum sulfadiazine (SDZ) and norfloxacin (NOR) removal efficiencies were 94.8% and 92.3% at pH 4 and 25 °C with adsorbent dosage of 2.5 g/L, respectively. When antibiotic concentrations ranged from 5 to 50 mg/L, the theoretical maximum adsorption capacities of SDZ and NOR were 16.7 mg/g and 25.8 mg/g, respectively. The Langmuir isotherm and pseudo-second-order kinetic models could better describe the adsorption process of both antibiotics, implying the monolayer chemical adsorption. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The ionic strength had no significant effect on the adsorption behavior of either antibiotic. Combined with BET, FTIR, and XPS results, the dominant mechanisms for SDZ and NOR adsorption were pore filling, π-π electron-donor-acceptor interaction, hydrogen bonds and surface complexation. Moreover, Lewis acid-base interaction also contributed to SDZ adsorption.


Asunto(s)
Carbón Orgánico , Cocos , Norfloxacino , Sulfadiazina , Contaminantes Químicos del Agua , Norfloxacino/química , Adsorción , Sulfadiazina/química , Carbón Orgánico/química , Cocos/química , Contaminantes Químicos del Agua/química , Cinética
2.
Materials (Basel) ; 17(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38930162

RESUMEN

Currently, large amounts of agricultural solid wastes have caused serious environmental problems. Agricultural solid waste is made into biochar by pyrolysis, which is an effective means of its disposal. As the prepared biochar has a good adsorption capacity, it is often used to treat pollutants in water, such as heavy metals and pharmaceuticals. PRO is an emerging contaminant in the environment today. However, there are limited studies on the interaction between biochars with PRO. Thus, in this study, we investigate the adsorption of PRO onto the biochars derived from three different feedstocks. The order of adsorption capacity was corn stalk biochar (CS, 10.97 mg/g) > apple wood biochar (AW, 10.09 mg/g) > rice husk biochar (RH, 8.78 mg/g). When 2 < pH < 9, the adsorption capacity of all the biochars increased as the pH increased, while the adsorption decreased when pH > 9, 10 and 10.33 for AW, CS and RH, respectively. The adsorption of PRO on biochars was reduced with increasing Na+ and Ca2+ concentrations from 0 to 200 mg·L-1. The effects of pH and coexisting ions illustrated that there exist electrostatic interaction and cation exchange in the process. In addition, when HA concentration was less than 20 mg/L, it promoted the adsorption of PRO on the biochars; however, when the concentration was more than 20 mg/L, its promoting effect was weakened and gradually changed into an inhibitory effect. The adsorption isotherm data of PRO by biochars were best fitted with the Freundlich model, indicating that the adsorption process is heterogeneous adsorption. The adsorption kinetics were fitted well with the pseudo-second-order model. All the results can provide new information into the adsorption behavior of PRO and the biochars in the aquatic environment and a theoretical basis for the large-scale application of biochar from agricultural solid wastes.

3.
J Photochem Photobiol B ; 257: 112957, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941921

RESUMEN

Phototherapy has been extensively used to prevent and treat signs of aging and stimulate wound healing, and phototherapy through light-emitting diodes (LEDs). In contrast to LED, organic LED (OLED) devices are composed of organic semiconductors that possess novel characteristics. We investigated the regenerative potential of OLED for restoring cellular potential from senescence and thus delaying animal aging. Bone marrow-derived stem cells (BMSCs) and adipose-derived stem cells (ADSCs) were isolated from the control and OLED- treated groups to evaluate their proliferation, migration, and differentiation potentials. Cellular senescence was evaluated using a senescence-associated ß-galactosidase (SA-ß-gal) activity assay and gene expression biomarker assessment. OLED treatment significantly increased the cell proliferation, colony formation, and migration abilities of stem cells. SA-ß-gal activity was significantly decreased in both ADSCs and BMSCs in the OLED-treated group. Gene expression biomarkers from treated mice indicated a significant upregulation of IGF-1 (insulin growthfactor-1). The upregulation of the SIRT1 gene inhibited the p16 and p19 genes then to downregulate the p53 expressions for regeneration of stem cells in the OLED-treated group. Our findings indicated that the survival rates of 10-month aging senescence-accelerated mouse prone 8 mice were prolonged and that their gross appearance improved markedly after OLED treatment. Histological analysis of skin and brain tissue also indicated significantly greater collagen fibers density, which prevents ocular abnormalities and ß-amyloid accumulation. Lordokyphosis and bone characteristics were observed to resemble those of younger mice after OLED treatment. In conclusion, OLED therapy reduced the signs of aging and enhanced stem-cell senescence recovery and then could be used for tissue regeneration.


Asunto(s)
Senescencia Celular , Sirtuina 1 , Regulación hacia Arriba , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Ratones , Regulación hacia Arriba/efectos de la radiación , Senescencia Celular/efectos de la radiación , Longevidad/efectos de la radiación , Proliferación Celular/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Diferenciación Celular/efectos de la radiación , Movimiento Celular/efectos de la radiación , Envejecimiento , Células Madre/citología , Células Madre/metabolismo , Células Madre/efectos de la radiación , beta-Galactosidasa/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología
5.
Sci Total Environ ; 944: 173956, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38879029

RESUMEN

The characteristics of radon exhalation in the hygroscopic properties of powder solid wastes are immensely significant for environmental safety and their transportation, storage, and landfill. This study detected the radon concentration of superfine cement and five kinds of powder solid waste: fly ash, silica fume, coal gangue, S95 mineral powder, and molybdenum tailing powder, at different hygroscopic times for 1-5 d under 95 % relative humidity. Additionally, the influence of particle size and porosity of solid waste on radon exhalation characteristics was analyzed using a laser particle size analyzer and nitrogen adsorption technology. The results show that the radon exhalation rate of the solid waste was at a low level in dry conditions. Although the presence of water due to the increased moisture absorption rate inhibited the radon exhalation to a certain extent, it was higher than that in dry conditions. The reciprocal of the moisture absorption rate had a strong linear relationship with the ratio between the radon exhalation rate after hygroscopy and radon exhalation rate from dry materials. The pore structure has a significant effect on the exhalation rate of radon, and the macropores inhibits the exhalation rate of radon. The results of this study have guiding significance for the reuse of solid waste and the prevention of radiation risk of radon exhalation during transportation.

6.
Opt Express ; 32(6): 8506-8519, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571108

RESUMEN

In this paper, a 1 × 2 photonic switch is designed based on a silicon-on-insulator (SOI) platform combined with the phase change material (PCM), Sb2S3, assisted by the direct binary search (DBS) algorithm. The designed photonic switch exhibits an impressive operating bandwidth ranging from 1450 to 1650 nm. The device has an insertion loss (IL) from 0.44 dB to 0.70 dB (of less than 0.7 dB) and cross talk (CT) from -26 dB to -20 dB (of less than -20 dB) over an operating bandwidth of 200 nm, especially an IL of 0.52 dB and CT of -24 dB at 1550 nm. Notably, the device is highly compact, with footprints of merely 3 × 4 µm2. Furthermore, we have extended the device's functionality for multifunctional operation in the C-band that can serve as both a 1 × 2 photonic switch and a 3 dB photonic power splitter. In the photonic switch mode, the device demonstrates an IL of 0.7 dB and a CT of -13.5 dB. In addition, when operating as a 3 dB photonic power splitter, the IL is less than 0.5 dB.

7.
Opt Express ; 32(6): 9456-9467, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571180

RESUMEN

Traditional optical information recognition (OIR), particle capture and manipulation require many optical devices or mechanical moving system components to achieve a specific function, which is difficult to achieve integration. This paper proposes a new method to realize these functions by using multi-focus metalens combining spectrum and polarization selection. The design incorporates three spectral bands, namely 500 nm, 580 nm, and 660 nm, within the visible light range. Additionally, it utilizes either left-handed or right-handed circularly polarized (LCP/RCP) light, resulting in six distinct focus focusing effects on a single focal plane. By analyzing the normalized light intensity (NLI) at the corresponding focus position, the OIR of any wavelength and polarization detection in the design can be realized, and the particle capture at different focusing positions can be realized. Our work can provide a new idea for the high integration of on-chip light recognition and operation and inspire the design of a highly integrated optical system with a smaller size and more substantial function.

8.
J Environ Sci (China) ; 142: 57-68, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527896

RESUMEN

Non-radical activation of persulfate (PS) by photocatalysts is an effective approach for removing organic pollutants from aqueous environments. In this study, a novel Bi2O3/BiO1.3I0.4 heterojunction was synthesized using a facile solvothermal approach and used for the first time for non-radical activation of PS to degrade propranolol (PRO) in the presence of visible light. The findings found that the degradation rate of PRO in the Bi2O3/BiO1.3I0.4/PS system was significantly increased from 19% to more than 90% within 90 min compared to the Bi2O3/BiO1.3I0.4 system. This indicated that the composite system exerted an excellent synergistic effect between the photocatalyst and the persulfate-based oxygenation. Quenching tests and electron paramagnetic resonance demonstrated that the non-radical pathway with singlet oxygen as the active species played a major role in the photocatalytic process. The existence of photo-generated holes during the reaction could also be directly involved in the oxidation of pollutants. Meanwhile, a possible PRO degradation pathway was also proposed. Furthermore, the impacts of pH, humic acid and common anions on the PRO degradation by the Bi2O3/BiO1.3I0.4/PS were explored, and the system's stability and reusability were also studied. This study exhibits a highly productive catalyst for PS activation via a non-radical pathway and provides a new idea for the degradation of PRO.


Asunto(s)
Contaminantes Ambientales , Propranolol , Oxígeno Singlete , Oxidación-Reducción , Luz
9.
Eur J Pharm Biopharm ; 196: 114201, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309538

RESUMEN

Cocrystal engineering, which involves the self-assembly of two or more components into a solid-state supramolecular structure through non-covalent interactions, has emerged as a promising approach to tailor the physicochemical properties of active pharmaceutical ingredient (API). Efficient coformer screening for cocrystal remains a challenge. Herein, a prediction strategy based on machine learning algorithms was employed to predict cocrystal formation and seven reliable models with accuracy over 0.890 were successfully constructed. Imatinib was selected as the model drug and the models established were applied to screen 31 potential coformers. Experimental verification results indicated RF-8 is the optimal model among seven models with an accuracy of 0.839. When the seven models were combined for coformer screening of Imatinib, the combinational model achieved an accuracy of 0.903, and eight new solid forms were observed and characterized. Benefiting from intermolecular interactions, the obtained multicomponent crystals displayed enhanced physicochemical properties. Dissolution and solubility experiments showed the prepared multicomponent crystals had higher cumulative dissolution rate and remarkably improved the solubility of imatinib, and IM-MC exhibited comparable solubility to Imatinib mesylate α form. Stability test and cytotoxicity results showed that multicomponent crystals exhibited excellent stability and the drug-drug cocrystal IM-5F exhibited higher cytotoxicity than pure API.


Asunto(s)
Química Farmacéutica , Mesilato de Imatinib , Cristalización , Química Farmacéutica/métodos , Solubilidad
10.
Integr Cancer Ther ; 22: 15347354231213613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38059303

RESUMEN

BACKGROUND: Fucus vesiculosus-derived fucoidan, a multifunctional bioactive polysaccharide sourced from marine organisms, exhibits a wide range of therapeutic properties, including its anti-tumor effects. While previous research has reported on its anti-cancer potential, limited studies have explored its synergistic capabilities when combined with other natural bioactive ingredients. In this current study, we present the development of an integrative functional beverage, denoted as VMW-FC, which is composed of a fucoidan complex (FC) along with a blend of various herbal components, including vegetables (V), mulberries and fruits (M), and spelt wheat (W). OBJECTIVE: Colorectal cancer (CRC) remains a significant cause of mortality, particularly in metastatic cases. Therefore, the urgent need for novel alternative medicines that comprehensively inhibit CRC persists. In this investigation, we assess the impact of VMW-FC on CRC cell proliferation, cell cycle dynamics, metastasis, in vivo tumorigenesis, and potential side effects. METHODS: Cell growth was assessed using MTT and colony formation assays, while metastatic potential was evaluated through wound healing and transwell migration assays. The underlying signaling mechanisms were elucidated through qPCR and western blot analysis. In vivo tumor formation and potential side effects were evaluated using a subcutaneous tumor-bearing NOD/SCID mouse model. RESULTS: Our findings demonstrate that VMW-FC significantly impedes CRC proliferation and migration in a dose- and time-dependent manner. Furthermore, it induces sub-G1 cell cycle arrest and an increase in apoptotic cell populations, as confirmed through flow-cytometric analysis. Notably, VMW-FC also suppresses xenograft tumor growth in NOD/SCID mice without causing renal or hepatic toxicity. CONCLUSION: The integrative herbal concoction VMW-FC presents a promising approach for inhibiting CRC by slowing proliferation and migration, inducing cell cycle arrest and apoptosis, and suppressing markers associated with proliferation (Ki-67, PCNA, and CDKs) and epithelial-mesenchymal transition (EMT) (Vimentin, N-cadherin, and ß-catenin).


Asunto(s)
Neoplasias Colorrectales , Animales , Ratones , Humanos , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Ratones Endogámicos NOD , Ratones SCID , Transducción de Señal , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Proliferación Celular , Transición Epitelial-Mesenquimal , Movimiento Celular
11.
Pharmaceutics ; 15(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37765145

RESUMEN

Multicomponent solid forms of low molecular weight drugs, such as co-crystals, salts, and co-amorphous systems, are a result of the combination of an active pharmaceutical ingredient (API) with a pharmaceutically acceptable co-former. These solid forms can enhance the physicochemical and pharmacokinetic properties of APIs, making them increasingly interesting and important in recent decades. Nevertheless, predicting the formation of API multicomponent solid forms in the early stages of formulation development can be challenging, as it often requires significant time and resources. To address this, empirical and computational methods have been developed to help screen for potential co-formers more efficiently and accurately, thus reducing the number of laboratory experiments needed. This review provides a comprehensive overview of current screening and prediction methods for the formation of API multicomponent solid forms, covering both crystalline states (co-crystals and salts) and amorphous forms (co-amorphous). Furthermore, it discusses recent advances and emerging trends in prediction methods, with a particular focus on artificial intelligence.

12.
J Biomed Sci ; 30(1): 77, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37691117

RESUMEN

BACKGROUND: Bioactive materials have now raised considerable attention for the treatment of osteoarthritis (OA), such as knee OA, rheumatoid OA, and temporomandibular joint (TMJ) OA. TMJ-OA is a common disease associated with an imbalance of cartilage regeneration, tissue inflammation, and disability in mouth movement. Recently, biological materials or molecules have been developed for TMJ-OA therapy; however, ideal treatment is still lacking. In this study, we used the combination of a human platelet rich plasma with hyaluronic acid (hPRP/HA) for TMJ-OA therapy to perform a clinical trial in dish to humans. METHOD: Herein, hPRP was prepared, and the hPRP/HA combined concentration was optimized by MTT assay. For the clinical trial in dish, pro-inflammatory-induced in-vitro and in-vivo mimic 3D TMJ-OA models were created, and proliferation, gene expression, alcian blue staining, and IHC were used to evaluate chondrocyte regeneration. For the animal studies, complete Freund's adjuvant (CFA) was used to induce the TMJ-OA rat model, and condyle and disc regeneration were investigated through MRI. For the clinical trial in humans, 12 patients with TMJ-OA who had disc displacement and pain were enrolled. The disc displacement and pain at baseline and six months were measured by MRI, and clinical assessment, respectively. RESULTS: Combined hPRP/HA treatment ameliorated the proinflammatory-induced TMJ-OA model and promoted chondrocyte proliferation by activating SOX9, collagen type I/II, and aggrecan. TMJ-OA pathology-related inflammatory factors were efficiently downregulated with hPRP/HA treatment. Moreover, condylar cartilage was regenerated by hPRP/HA treatment in a proinflammatory-induced 3D neocartilage TMJ-OA-like model. During the animal studies, hPRP/HA treatment strongly repaired the condyle and disc in a CFA-induced TMJ-OA rat model. Furthermore, we performed a clinical trial in humans, and the MRI data demonstrated that after 6 months of treatment, hPRP/HA regenerated the condylar cartilage, reduced disc displacement, alleviated pain, and increased the maximum mouth opening (MMO). Overall, clinical trials in dish to human results revealed that hPRP/HA promoted cartilage regeneration, inhibited inflammation, reduced pain, and increased joint function in TMJ-OA. CONCLUSION: Conclusively, this study highlighted the therapeutic potential of the hPRP and HA combination for TMJ-OA therapy, with detailed evidence from bench to bedside. Trial registration Taipei Medical University Hospital (TMU-JIRB No. N201711041). Registered 24 November 2017. https://tmujcrc.tmu.edu.tw/inquiry_general.php .


Asunto(s)
Ácido Hialurónico , Osteoartritis de la Rodilla , Humanos , Animales , Ratas , Ácido Hialurónico/farmacología , Ácido Hialurónico/uso terapéutico , Dolor , Inflamación , Materiales Biocompatibles
13.
Biomater Sci ; 11(13): 4522-4536, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37158091

RESUMEN

Aging involves tissue and cell potential dysfunction characterized by stem cell senescence and extracellular matrix microenvironment (ECM) alteration. Chondroitin sulfate (CS), found in the ECM of normal cells and tissues, aids in maintaining tissue homeostasis. Here, CS-derived biomaterial (CSDB) from sturgeon is extracted to investigate its antiaging effect in senescence-accelerated mouse prone-8 (SAMP8) mice and elucidate the underlying mechanism of its action. Although CSDB has been widely extracted from different sources and used as a scaffold, hydrogel, or drug carrier for the treatment of various pathological diseases, CSDB has not yet been used as a biomaterial for the amelioration of senescence and aging features. In this study, the extracted sturgeon CSDB showed a low molecular weight and comprised 59% 4-sulfated CS and 23% 6-sulfated CS. In an in vitro study, sturgeon CSDB promoted cell proliferation and reduced oxidative stress to inhibit stem cell senescence. In an ex vivo study, after oral CSDB treatment of SAMP8 mice, the stem cells were extracted to analyze the p16Ink4a and p19Arf gene-related pathways, which were inhibited and then SIRT-1 gene expression was upregulated to reprogram stem cells from a senescence state for retarding aging. In an in vivo study, CSDB also restored the aging-phenotype-related bone mineral density and skin morphology to prolong longevity. Thus, sturgeon CSDB may be useful for prolonging healthy longevity as an anti-aging drug.


Asunto(s)
Antioxidantes , Longevidad , Ratones , Animales , Sulfatos de Condroitina/farmacología , Envejecimiento/genética , Senescencia Celular , Peces/genética , Células Madre , Expresión Génica
14.
BMC Cancer ; 23(1): 1, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36597025

RESUMEN

BACKGROUND: Despite the advancement in chemotherapeutic drugs for colon cancer treatment, it is still a life-threatening disease worldwide due to drug resistance. Therefore, an urgently needed to develop novel drugs for colon cancer therapies. AGA is a combination of traditional Chinese medicine Antler's extract (A), Ganoderma lucidum (G), and Antrodia camphorata (A); it contains a lot of biomolecules like polysaccharides, fatty acids, and triterpenoids that are known to exerting anti-oxidative, anti-inflammatory, anti-microbial and anti-tumor activities in oral cancer. In this study, we investigate AGA anti-proliferative, anti-metastatic and apoptotic activity to explore its anti-cancer activity against colon cancer cells and its underlying mechanism. METHOD: Here, in-vitro studies were performed to determine the antiproliferative activity of AGA through MTT and colony formation assays. Wound healing and transwell migration assay were used to evaluate the metastasis. Flow cytometry and protein expression were used to investigate the involved molecular mechanism by evaluating the cell cycle and apoptosis. The in-vivo anti-cancerous activity of AGA was assessed by xenograft mice model of colon cancer cells. RESULTS: We found that AGA significantly inhibited the proliferative capacity and metastasis of colon cancer cells in-vitro. In addition, AGA induced cell cycle arrest in the sub-G1 phase through upregulating p21 and downregulating CDK2, CDK6 in SW620, and CDK4 in SW480 and HT29, respectively. Annexin-v assay indicated that colon cancer cells had entered early and late apoptosis after treatment with AGA. Furthermore, a mechanistic protein expressions study revealed that AGA in p53-dependent and independent regulated the apoptosis of colon cancer by downregulating the p53 protein expression in SW620 and SW480 cells but upregulating in a dose-dependent manner in HT29 cells and increasing the expression of Bax and caspase-9 to inhibit the colon cancer cells. In vivo study, we found that AGA significantly reduced the xenograft tumor growth in NOD/SCID mice with no adverse effect on the kidney and liver. CONCLUSION: Collectively, AGA has the potential to inhibit colon cancer through inhibiting proliferation, migration, and cell cycle kinase by upregulating p21 protein expression and promoting the apoptotic protein in a p53-dependent and independent manner.


Asunto(s)
Neoplasias del Colon , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Puntos de Control de la Fase G1 del Ciclo Celular , Proteína p53 Supresora de Tumor/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Apoptosis , Ciclo Celular , Proliferación Celular , Línea Celular Tumoral
15.
Life (Basel) ; 11(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34685425

RESUMEN

Complications of diabetes mellitus (DM) range from acute to chronic conditions, leading to multiorgan disorders such as nephropathy, retinopathy, and neuropathy. However, little is known about the influence of DM on intervertebral disc degeneration (IVDD). Moreover, traditional surgical outcomes in DM patients have been found poor, and to date, no definitive alternative treatment exists for DM-induced IVDD. Recently, among various novel approaches in regenerative medicine, the concentrated platelet-derived biomaterials (PDB), which is comprised of transforming growth factor-ß1 (TGF-ß1), platelet-derived growth factor (PDGF), etc., have been reported as safe, biocompatible, and efficacious alternatives for various disorders. Therefore, we initially investigated the correlations between DM and IVDD, through establishing in vitro and in vivo DM models, and further evaluated the therapeutic effects of PDB in this comorbid pathology. In vitro model was established by culturing immortalized human nucleus pulposus cells (ihNPs) in high-glucose medium, whereas in vivo DM model was developed by administering streptozotocin, nicotinamide and high-fat diet to the mice. Our results revealed that DM deteriorates both ihNPs and IVD tissues, by elevating reactive oxygen species (ROS)-induced oxidative stress, inhibiting chondrogenic markers and disc height. Contrarily, PDB ameliorated IVDD by restoring cellular growth, chondrogenic markers and disc height, possibly through suppressing ROS levels. These data imply that PDB may serve as a potential chondroprotective and chondroregenerative candidate for DM-induced IVDD.

16.
Cell Transplant ; 30: 9636897211045319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34586895

RESUMEN

Apart from aging process, adult intervertebral disc (IVD) undergoes various degenerative processes. However, the nicotine has not been well identified as a contributing etiology. According to a few studies, nicotine ingestion through smoking, air or clothing may significantly accumulate in active as well as passive smokers. Since nicotine has been demonstrated to adversely impact various physiological processes, such as sympathetic nervous system, leading to impaired vasculature and cellular apoptosis, we aimed to investigate whether nicotine could induce IVD degeneration. In particular, we evaluated dose-dependent impact of nicotine in vitro to simulate its chronic accumulation, which was later treated by platelet-derived biomaterials (PDB). Further, during in vivo studies, mice were subcutaneously administered with nicotine to examine IVD-associated pathologic changes. The results revealed that nicotine could significantly reduce chondrocytes and chondrogenic indicators (Sox, Col II and aggrecan). Mice with nicotine treatment also exhibited malformed IVD structure with decreased Col II as well as proteoglycans, which was significantly increased after PDB administration for 4 weeks. Mechanistically, PDB significantly restored the levels of IGF-1 signaling proteins, particularly pIGF-1 R, pAKT, and IRS-1, modulating ECM synthesis by chondrocytes. Conclusively, the PDB impart reparative and tissue regenerative processes by inhibiting nicotine-initiated IVD degeneration, through regulating IGF-1/AKT/IRS-1 signaling axis.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Degeneración del Disco Intervertebral/terapia , Nicotina/efectos adversos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Transducción de Señal
17.
Environ Sci Pollut Res Int ; 28(44): 62726-62735, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34212336

RESUMEN

The frequent and extensive use of insecticides has caused serious aquatic pollution, thus posing a great threat to ecosystems and public health. In this study, three classes of insecticides including 20 organochlorine pesticides (OCPs), 6 organophosphorus pesticides (OPs), and 8 pyrethroids were analyzed in 24 sediments from the Liaohe River basin. The results showed that all sediment samples were contaminated with insecticides, with the total concentrations ranging from 7.3 ng/g dry weight (dw) to 242.8 ng/g dw. Among them, pyrethroids (2.2-102.5 ng/g dw) contributed 55% of the total insecticide concentration, followed by OCPs (1.3-94.8 ng/g dw) and OPs (2.6-45.5 ng/g dw), representing 24% and 21% of the total concentrations, respectively. For OCPs, hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) showed the highest concentrations of 0.37-37.5 ng/g dw and 0.05-23.2 ng/g dw, respectively. Historical inputs of lindane and technical DDT were the major sources of HCHs and DDTs, respectively, as indicated by isomer or metabolite ratios. Additionally, dichlorvos (0.26-17.1 ng/g dw) was the main OP, while cypermethrin dominated the pyrethroids with the concentrations of 1.6-32.6 ng/g dw. The spatial distribution revealed that significantly higher residues of insecticides were observed in sediments from the Daliao River system than those from the Liao River. This implied that these insecticides were most likely from the discharge of highly polluted sewage and industrial wastewater from adjacent industrial and populous cities as well as urban applications (e.g., landscape maintenance and household pest control). An ecological risk assessment based on risk quotients suggested that the three classes of insecticides analyzed here pose a low risk to aquatic organisms in the study area.


Asunto(s)
Hidrocarburos Clorados , Insecticidas , Plaguicidas , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Hidrocarburos Clorados/análisis , Insecticidas/análisis , Compuestos Organofosforados , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis
18.
Mater Sci Eng C Mater Biol Appl ; 125: 112064, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33965097

RESUMEN

Poor safety and effectiveness is an outstanding challenge in the preparation of drug delivery systems (DDS) for cancer treatment. The pursuit of the high curative effect will inevitably increase the risk of adverse side effects. Herein, a bio-safe DDS was constructed by combining the advantages of functional zein and Au doped mesoporous silica nanoparticles (Au@SiO2) to achieve chemo-photothermal therapy. The cRGD functionalized zein (cRGD-Zein) was coated on the surface of Au@SiO2 which effectively avoided premature leakage of paclitaxel and realized sustained drug release. Meanwhile, the high hemolysis rate (107%) of Au@SiO2 had been significantly reduced to 4%. The anti-hemolysis mechanism of functionalized zein was explored to give a deeper understanding of the interaction between nanoparticles and RBCs. The results showed that the functional zein would change the protein conformation during the interaction with Au@SiO2 to protect the RBCs from the damage of Au@SiO2. And the release rate of hemoglobin was limited by the size of RBCs membrane cracks with approximately 40 nm in width and 470 nm in length. The cell cytotoxicity and uptake assays showed that the prepared DDS exhibited low tumour cell viability (35%) and enhanced uptake performance (99.3%). This work suggested that the prepared nanoparticles could serve as a promising carrier to achieve safe and efficacious tumour therapy.


Asunto(s)
Nanopartículas , Zeína , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Dióxido de Silicio
19.
Biomed Pharmacother ; 139: 111593, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33865018

RESUMEN

BACKGROUND: Cerebral ischemic events, comprising of excitotoxicity, reactive oxygen production, and inflammation, adversely impact the metabolic-redox circuit in highly active neuronal metabolic profile which maintains energy-dependent brain activities. Therefore, we investigated neuro-regenerative potential of melatonin (Mel), a natural biomaterial secreted by pineal gland. METHODS: We specifically determined whether Mel could influence tunneling nanotubes (TNTs)-mediated transfer of functional mitochondria (Mito) which in turn may alter membrane potential, oxidative stress and apoptotic factors. In vitro studies assessed the effects of Mito on levels of cytochrome C, mitochondrial transfer, reactive oxygen species, membrane potential and mass, which were all further enhanced by Mel pre-treatment, whereas in vivo studies examined brain infarct area (BIA), neurological function, inflammation, brain edema and integrity of neurons and myelin sheath in control, ischemia stroke (IS), IS + Mito and IS + Mel-Mito group rats. RESULTS: Results showed that Mel pre-treatment significantly increased mitochondrial transfer and antioxidants, and inhibited apoptosis. Mel-pretreated Mito also significantly reduced BIA with improved neurological function. Apoptotic, oxidative-stress, autophagic, mitochondrial/DNA-damaged biomarkers indices were also improved. CONCLUSION: Conclusively, Mel is a potent biomaterial which could potentially impart neurogenesis through repairing impaired metabolic-redox circuit via enhanced TNT-mediated mitochondrial transfer, anti-oxidation, and anti-apoptotic activities in ischemia.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanotubos , Neurogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas Sprague-Dawley , Regulación hacia Arriba
20.
Aging (Albany NY) ; 13(3): 3605-3617, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33461165

RESUMEN

Bony injuries lead to compromised skeletal functional ability which further increase in aging population due to decreased bone mineral density. Therefore, we aimed to investigate the therapeutic potential of platelet-derived biomaterials (PDB) against bone injury. Specifically, we assessed the impact of PDB on osteo-inductive characteristics and migration of mouse embryonic fibroblasts (MEFs). Osteogenic lineage, matrix mineralization and cell migration were determined by gene markers (RUNX2, OPN and OCN), alizarin Red S staining, and migration markers (FAK, pFAK and Src) and EMT markers, respectively. The therapeutic impact of TGF-ß1, a key component of PDB, was confirmed by employing inhibitor of TGF-ß receptor I (Ti). Molecular imaging-based in vivo cellular migration in mice was determined by establishing bone injury at right femurs. Results showed that PDB markedly increased expression of osteogenic markers, matrix mineralization, migration and EMT markers, revealing higher osteogenic and migratory potential of PDB-treated MEFs. In vivo cell migration was manifested by expression of migratory factors, SDF-1 and CXCR4. Compared to control, PDB-treated mice exhibited higher bone density and volume. Ti treatment inhibited both migration and osteogenic potential of MEFs, affirming impact of TGF-ß1. Collectively, our study clearly indicated PDB-rescued bone injury through enhancing migratory potential of MEFs and osteogenesis.


Asunto(s)
Materiales Biocompatibles , Plaquetas/metabolismo , Regeneración Ósea , Movimiento Celular , Fémur/lesiones , Fibroblastos/metabolismo , Osteogénesis , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Densidad Ósea , Calcificación Fisiológica , Linaje de la Célula , Quimiocina CXCL12 , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal , Fémur/metabolismo , Fémur/patología , Fibroblastos/citología , Quinasa 1 de Adhesión Focal , Técnicas In Vitro , Ratones , Células 3T3 NIH , Osteocalcina/genética , Osteopontina/genética , Receptores CXCR4 , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Familia-src Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA