Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2312046, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829034

RESUMEN

Accurate construction of artificial nano-chaperones' structure is crucial for precise regulation of protein conformational transformation, facilitating effective treatment of proteopathy. However, how the ligand-anchors of nano-chaperones affect the spatial conformational changes in proteins remains unclear, limiting the development of efficient nano-chaperones. In this study, three types of gold nanoparticles (AuNPs) with different core/ligands interface anchor structures (Au─NH─R, Au─S─R, and Au─C≡C─R, R = benzoic acid) are synthesized as an ideal model to investigate the effect of interfacial anchors on Aß and amylin fibrillization. Computational results revealed that the distinct interfacial anchors imparted diverse distributions of electrostatic potential on the nanointerface and core/ligands bond strength of AuNPs, leading to differential interactions with amyloid peptides. Experimental results demonstrated that all three types of AuNPs exhibit site-specific inhibitory effects on Aß40 fibrillization due to preferential binding. For amylin, amino-anchored AuNPs demonstrate strong adsorption to multiple sites on amylin and effectively inhibit fibrillization. Conversely, thiol- and alkyne-anchored AuNPs adsorb at the head region of amylin, promoting folding and fibrillization. This study not only provided molecular insights into how core/ligands interfacial anchors of nanomaterials induce spatial conformational changes in amyloid peptides but also offered guidance for precisely engineering artificial-chaperones' nanointerfaces to regulate the conformational transformation of proteins.

2.
J Colloid Interface Sci ; 513: 903-910, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29278856

RESUMEN

Mercaptans are highly volatile compounds responsible for disagreeable odors and very low olfactory threshold, especially for CH3SH (0.4 ppvb). To the best knowledge of us, approach for controlling low-concentrated odors (i.e. 1-10 ppm) is scarcely reported. In this research, Cu-doped mesoporous silica was synthesized for removal of low-concentrated CH3SH. The as-prepared samples show considerably thermal and mechanical stability and could be thermal-regenerated. Copper loading ratio and humidity have significant impacts on eliminating odors. According to XRD, TEM, BET, NMR and EPR, we deduce that surface groups on CuO nanoparticles and the SiOCu group are highly possibly transformed into a hydrated complex which is much more effective in capturing CH3SH with its empty Cu-3d orbit. Although CH3SH has to compete with water for absorption sites, it is always the "winner" owing to the strong chelating ability between SH group and Cu (Ⅱ).

3.
ChemistryOpen ; 5(5): 495-504, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27777843

RESUMEN

A Ce-Mn composite oxide possessing a rod-like morphology (with a fixed molar ratio of Ce/Mn=3:7) was synthesized through a hydrothermal method. Mn ions were doped into a CeO2 framework to replace Ce ions, thereby increasing the concentration of oxygen vacancies. The formation energies of O vacancies for the Ce-Mn composite oxide were calculated by applying density functional theory (DFT). The data showed that it was easier to form an O vacancy in the composite. The catalytic behavior of the Ce-Mn composite oxide for benzene degradation was researched in detail, which exhibited a higher activity than the pure phases. Based on this, the Ce-Mn composite oxide was chosen as a supporter to load PdO nanoparticles. The activity was enhanced further compared with that of the supporter alone (for the supporter, the reaction rate R214 °C=0.68×10-4 mol gcat-1 s-1 and apparent activation energy Ea=12.75 kJ mol-1; for the supporting catalyst, R214 °C=1.46×10-4 mol gcat-1 s-1, Ea=10.91 kJ mol-1). The corresponding catalytic mechanism was studied through in situ Raman and FTIR spectroscopy, which indicated that the process of benzene oxidation was related to different types of oxygen species existing at the surface of the catalysts.

4.
Nanoscale ; 8(34): 15763-73, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27531821

RESUMEN

A hierarchical CoCo layered double hydroxide (LDH) nanostructure was constructed through a facile topochemical transformation route under a dynamic oxygen atmosphere. Self-assembled coral-like CoAl LDH nanostructures via the homogeneous precipitation method were also inspected under different ammonia-releasing reagents and solvents. Benzene and toluene were chosen as probe molecules to evaluate their catalytic performance over the metal oxide CoCoO and CoAlO calcined from their corresponding LDH precursors. Nanocatalyst of trivalent Co ions replaced Al(3+) ions in the bruited-like layer had a higher catalytic activity (T99(benzene) = 210 °C and T99(toluene) = 220 °C at a space velocity = 60 000 mL g(-1) h(-1)). Raman spectroscopy, XPS and H2-TPR demonstrated the existence of abundant high valence Co ions that serve as active sites. TPD verified the types of active oxygen species and surface acid properties. It was concluded that the high valence Co ions induced excellent low-temperature reducibility. Surface Lewis acid sites and the surface Oads/Olatt molar ratio (0.61) played relevant roles in determining its catalytic oxidation performance. Our design in this work provides a promising approach for the development of nanocatalysts with exposed desirable defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA