Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Explor Med ; 5(2): 193-214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854406

RESUMEN

Aim: Endothelial dysfunction has been associated with both cerebrovascular pathology and Alzheimer's disease (AD). However, the connection between circulating endothelial cells and the risk of AD remains uncertain. The objective was to leverage data from the Framingham Heart Study to investigate various circulating endothelial subtypes and their potential correlations with the risk of AD. Methods: The study conducted data analyses using Cox proportional hazard regression and linear regression methods. Additionally, genome-wide association study (GWAS) was carried out to further explore the data. Results: Among the eleven distinct circulating endothelial subtypes, only circulating endothelial progenitor cells (EPCs) expressing CD34+CD133+ were found to be negatively and dose-dependently associated with reduced AD risk. This association persisted even after adjusting for age, sex, years of education, apolipoprotein E (APOE) ε4 status, and various vascular diseases. Particularly noteworthy was the significant association observed in individuals with hypertension and cerebral microbleeds. Consistently, positive associations were identified between CD34+CD133+ EPCs and specific brain regions, such as higher proportions of circulating CD34+CD133+ cells correlating with increased volumes of white matter and the hippocampus. Additionally, a GWAS study unveiled that CD34+CD133+ cells influenced AD risk specifically in individuals with homozygous genotypes for variants in two stem cell-related genes: kirre like nephrin family adhesion molecule 3 (KIRREL3, rs580382 CC and rs4144611 TT) and exocyst complex component 6B (EXOC6B, rs61619102 CC). Conclusions: The findings suggest that circulating CD34+CD133+ EPCs possess a protective effect and may offer a new therapeutic avenue for AD, especially in individuals with vascular pathology and those carrying specific genotypes of KIRREL3 and EXOC6B genes.

2.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746141

RESUMEN

Patients with triple negative breast cancer (TNBC) and comorbid Type 2 Diabetes (T2D), characterized by insulin resistance of adipose tissue, have higher risk of metastasis and shorter survival. Adipocytes are the main non-malignant cells of the breast tumor microenvironment (TME). However, adipocyte metabolism is usually ignored in oncology and mechanisms that couple T2D to TNBC outcomes are poorly understood. Here we hypothesized that exosomes, small vesicles secreted by TME breast adipocytes, drive epithelial-to-mesenchymal transition (EMT) and metastasis in TNBC via miRNAs. Exosomes were purified from conditioned media of 3T3-L1 mature adipocytes, either insulin-sensitive (IS) or insulin-resistant (IR). Murine 4T1 cells, a TNBC model, were treated with exosomes in vitro (72h). EMT, proliferation and angiogenesis were elevated in IR vs. control and IS. Brain metastases showed more mesenchymal morphology and EMT enrichment in the IR group. MiR-145a-3p is highly differentially expressed between IS and IR, and potentially regulates metastasis. Significance: IR adipocyte exosomes modify TME, increase EMT and promote metastasis to distant organs, likely through miRNA pathways. We suggest metabolic diseases such as T2D reshape the TME, promoting metastasis and decreasing survival. Therefore, TNBC patients with T2D should be closely monitored for metastasis, with metabolic medications considered.

3.
Nat Rev Urol ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907729

RESUMEN

The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.

4.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37080161

RESUMEN

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Asunto(s)
Conducta de Masa , Neoplasias , Humanos , Comunicación
5.
Nat Commun ; 14(1): 688, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755019

RESUMEN

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e., protein abundance from whole-cells, nucleus, exosomes, secretome and membrane; N-glycosylation, phosphorylation; metabolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply PAMAF in an established in vitro model of TGFß-induced epithelial to mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap resource allowed us to identify; -topological coupling between omics, -four distinct cell states during EMT, -omics-specific kinetic paths, -stage-specific multi-omics characteristics, -distinct regulatory classes of genes, -ligand-receptor mediated intercellular crosstalk by integrating scRNAseq and subcellular proteomics, and -combinatorial drug targets (e.g., Hedgehog signaling and CAMK-II) to inhibit EMT, which we validate using a 3D mammary duct-on-a-chip platform. Overall, this study provides a resource on TGFß signaling and EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Hedgehog , Transición Epitelial-Mesenquimal/genética , Proteínas Hedgehog/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
6.
medRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711847

RESUMEN

Cerebrovascular damage coexists with Alzheimer's disease (AD) pathology and increases AD risk. However, it is unclear whether endothelial progenitor cells reduce AD risk via cerebrovascular repair. By using the Framingham Heart Study (FHS) offspring cohort, which includes data on different progenitor cells, the incidence of AD dementia, peripheral and cerebrovascular pathologies, and genetic data (n = 1,566), we found that elevated numbers of circulating endothelial progenitor cells with CD34+CD133+ co-expressions had a dose-dependent association with decreased AD risk (HR = 0.67, 95% CI: 0.46-0.96, p = 0.03) after adjusting for age, sex, years of education, and APOE ε4. With stratification, this relationship was only significant among those individuals who had vascular pathologies, especially hypertension (HTN) and cerebral microbleeds (CMB), but not among those individuals who had neither peripheral nor central vascular pathologies. We applied a genome-wide association study (GWAS) and found that the number of CD34+CD133+ cells impacted AD risk depending on the homozygous genotypes of two genes: KIRREL3 rs580382 CC carriers (HR = 0.31, 95% CI: 0.17-0.57, p<0.001), KIRREL3 rs4144611 TT carriers (HR = 0.29, 95% CI: 0.15-0.57, p<0.001), and EXOC6B rs61619102 CC carriers (HR = 0.49, 95% CI: 0.31-0.75, p<0.001) after adjusting for confounders. In contrast, the relationship did not exist in their counterpart genotypes, e.g. KIRREL3 TT/CT or GG/GT carriers and EXOC6B GG/GC carriers. Our findings suggest that circulating CD34+CD133+ endothelial progenitor cells can be therapeutic in reducing AD risk in the presence of cerebrovascular pathology, especially in KIRREL3 and EXOC6B genotype carriers.

7.
Front Endocrinol (Lausanne) ; 13: 1044670, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531496

RESUMEN

Obesity-driven (type 2) diabetes (T2D), the most common metabolic disorder, both increases the incidence of all molecular subtypes of breast cancer and decreases survival in postmenopausal women. Despite this clear link, T2D and the associated dysfunction of diverse tissues is often not considered during the standard of care practices in oncology and, moreover, is treated as exclusion criteria for many emerging clinical trials. These guidelines have caused the biological mechanisms that associate T2D and breast cancer to be understudied. Recently, it has been illustrated that the breast tumor microenvironment (TME) composition and architecture, specifically the surrounding cellular and extracellular structures, dictate tumor progression and are directly relevant for clinical outcomes. In addition to the epithelial cancer cell fraction, the breast TME is predominantly made up of cancer-associated fibroblasts, adipocytes, and is often infiltrated by immune cells. During T2D, signal transduction among these cell types is aberrant, resulting in a dysfunctional breast TME that communicates with nearby cancer cells to promote oncogenic processes, cancer stem-like cell formation, pro-metastatic behavior and increase the risk of recurrence. As these cells are non-malignant, despite their signaling abnormalities, data concerning their function is never captured in DNA mutational databases, thus we have limited insight into mechanism from publicly available datasets. We suggest that abnormal adipocyte and immune cell exhaustion within the breast TME in patients with obesity and metabolic disease may elicit greater transcriptional plasticity and cellular heterogeneity within the expanding population of malignant epithelial cells, compared to the breast TME of a non-obese, metabolically normal patient. These challenges are particularly relevant to cancer disparities settings where the fraction of patients seen within the breast medical oncology practice also present with co-morbid obesity and metabolic disease. Within this review, we characterize the changes to the breast TME during T2D and raise urgent molecular, cellular and translational questions that warrant further study, considering the growing prevalence of T2D worldwide.


Asunto(s)
Neoplasias de la Mama , Diabetes Mellitus Tipo 2 , Humanos , Femenino , Microambiente Tumoral/fisiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias de la Mama/patología , Adipocitos/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo
8.
J Surg Res ; 278: 39-48, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35588573

RESUMEN

INTRODUCTION: The incidence of metabolically unhealthy obesity is rising nationally. In this study, we compare wound and overall complications between metabolically unhealthy obese and healthy patients undergoing elective plastic surgery and model how operative time influences a complication risk. METHODS: Patients undergoing elective breast and body plastic surgery procedures in the 2009-2019 National Surgical Quality Improvement Program (NSQIP) dataset were identified. Complications were compared between metabolically unhealthy obese (body mass index [BMI] > 30 with diabetes and/or hypertension) versus metabolically healthy obese patients (BMI > 30 without diabetes or hypertension). Logistic regression was used to model the probability of wound complications across operative times stratified by metabolic status. RESULTS: Of 139,352 patients, 13.4% (n = 18,663) had metabolically unhealthy obesity and 23.8% (n = 33,135) had metabolically healthy obesity. Compared to metabolically healthy patients, metabolically unhealthy patients had higher incidence of wound complications (6.9% versus 5.6%; P < 0.001) and adverse events (12.4% versus 9.6%; P < 0.001), in addition to higher 30-d readmission, returns to the operating room, and length of stay (all P < 0.001). After adjustment, BMI (Odds ratio [OR] 7.86), hypertension (OR 1.15), and diabetes (OR 1.25) were independent risk factors for wound complications (all P < 0.001). Among metabolically unhealthy patients, the operative time was log-linear with a wound complication risk (OR 1.21; P < 0.001). CONCLUSIONS: Diabetes and hypertension are additive risk factors with obesity for wound complications in elective plastic surgery. Among patients with metabolically unhealthy obesity, a risk of wound complications increases logarithmically with operative time. This distinction with regard to metabolic state might explain the unclear impact of obesity on surgical outcomes within existing surgical literature.


Asunto(s)
Hipertensión , Obesidad Metabólica Benigna , Cirugía Plástica , Índice de Masa Corporal , Humanos , Hipertensión/complicaciones , Hipertensión/epidemiología , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/metabolismo , Obesidad Metabólica Benigna/complicaciones , Obesidad Metabólica Benigna/epidemiología , Factores de Riesgo
10.
Prostate ; 82(10): 1005-1015, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403746

RESUMEN

In patients with prostate cancer, the duration of remission after treatment with androgen deprivation therapies (ADTs) varies dramatically. Clinical experience has demonstrated difficulties in predicting individual risk for progression due to chemoresistance. Drug combinations that inhibit androgen biosynthesis (e.g., abiraterone acetate) and androgen signaling (e.g., enzalutamide or apalutamide) have proven so effective that new forms of ADT resistance are emerging. In particular, prostate cancers with a neuroendocrine transcriptional signature, which demonstrate greater plasticity, and potentially, increased predisposition to metastasize, are becoming more prevalent. Notably, these subtypes had in fact been relatively rare before the widespread success of novel ADT regimens. Therefore, better understanding of these resistance mechanisms and potential alternative treatments are necessary to improve progression-free survival for patients treated with ADT. Targeting the bromodomain and extra-terminal (BET) protein family, specifically BRD4, with newer investigational agents may represent one such option. Several families of chromatin modifiers appear to be involved in ADT resistance and targeting these pathways could also offer novel approaches. However, the limited transcriptional and genomic information on ADT resistance mechanisms, and a serious lack of patient diversity in clinical trials, demand profiling of a much broader clinical and demographic range of patients, before robust conclusions can be drawn and a clear direction established.


Asunto(s)
Antagonistas de Andrógenos , Proteínas del Tejido Nervioso/metabolismo , Neoplasias de la Próstata Resistentes a la Castración , Receptores de Superficie Celular/metabolismo , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Proteínas de Ciclo Celular , Resistencia a Antineoplásicos/genética , Humanos , Masculino , Proteínas Nucleares , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Factores de Transcripción , Resultado del Tratamiento
11.
Mol Cancer Res ; 20(5): 712-721, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35105672

RESUMEN

Lysine-specific demethylase 1 (LSD1) is a histone demethylase that contributes to the etiology of oral squamous cell carcinoma (OSCC) in part by promoting cancer stem cell phenotypes. The molecular signals regulated by LSD1, or acting with LSD1, are poorly understood, particularly in the development of OSSC. In this study, we show that conditional deletion of the Lsd1 gene or pharmacologic inhibition of LSD1 in the tongue epithelium leads to reduced development of OSCC following exposure to the tobacco carcinogen 4NQO. LSD1 inhibition attenuated proliferation and clonogenic survival and showed an additive effect when combined with the YAP inhibitor Verteporfin. Interestingly, LSD1 inhibition upregulated the expression of PD-L1, leading to immune checkpoint inhibitor therapy responses. IMPLICATIONS: Collectively, our studies reveal a critical role for LSD1 in OSCC development and identification of tumor growth targeting strategies that can be combined with LSD1 inhibition for improved therapeutic application.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Histona Demetilasas/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
12.
J Young Investig ; 25(12)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37408595

RESUMEN

In the current COVID-19 pandemic, various Automated Exposure Notification (AEN) systems have been proposed to help quickly identify potential contacts of infected individuals. All these systems try to leverage the current understanding of the following factors: transmission risk, technology to address risk modeling, system policies and privacy considerations. While AEN holds promise for mitigating the spread of COVID-19, using short-range communication channels (Bluetooth) in smartphones to detect close individual contacts may be inaccurate for modeling and informing transmission risk. This work finds that the current close contact definitions may be inadequate to reduce viral spread using AEN technology. Consequently, relying on distance measurements from Bluetooth Low-Energy may not be optimal for determining risks of exposure and protecting privacy. This paper's literature analysis suggests that AEN may perform better by using broadly accessible technologies to sense the respiratory activity, mask status, or environment of participants. Moreover, the paper remains cognizant that smartphone sensors can leak private information and thus recommends additional objectives for maintaining user privacy without compromising utility for population health. This literature review and analysis will simultaneously interest (i) health professionals who desire a fundamental understanding of the design and utility of AEN systems and (ii) technologists interested in understanding their epidemiological basis in the light of recent research. Ultimately, the two disparate communities need to understand each other to assess the value of AEN systems in mitigating viral spread, whether for the COVID-19 pandemic or for future ones.

13.
Artículo en Inglés | MEDLINE | ID: mdl-36644690

RESUMEN

Comorbid Type 2 diabetes (T2D), a metabolic complication of obesity, associates with worse cancer outcomes for prostate, breast, head and neck, colorectal and several other solid tumors. However, the molecular mechanisms remain poorly understood. Emerging evidence shows that exosomes carry miRNAs in blood that encode the metabolic status of originating tissues and deliver their cargo to target tissues to modulate expression of critical genes. Exosomal communication potentially connects abnormal metabolism to cancer progression. Here, we hypothesized that T2D plasma exosomes induce epithelial-mesenchymal transition (EMT) and immune checkpoints in prostate cancer cells. We demonstrate that plasma exosomes from subjects with T2D induce EMT features in prostate cancer cells and upregulate the checkpoint genes CD274 and CD155. We demonstrate that specific exosomal miRNAs that are differentially abundant in plasma of T2D adults compared to nondiabetic controls (miR374a-5p, miR-93-5p and let-7b-3p) are delivered to cancer cells, thereby regulating critical target genes. We build on our previous reports showing BRD4 controls migration and dissemination of castration-resistant prostate cancer, and transcription of key EMT genes, to show that T2D exosomes require BRD4 to drive EMT and immune ligand expression. We validate our findings with gene set enrichment analysis of human prostate tumor tissue in TGCA genomic data. These results suggest novel, non-invasive approaches to evaluate and potentially block progression of prostate and other cancers in patients with comorbid T2D.

14.
Sci Signal ; 14(710): eabj2807, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34813359

RESUMEN

Obesity and metabolic diseases, such as insulin resistance and type 2 diabetes (T2D), are associated with metastatic breast cancer in postmenopausal women. Here, we investigated the critical cellular and molecular factors behind this link. We found that primary human adipocytes shed extracellular vesicles, specifically exosomes, that induced the expression of genes associated with epithelial-to-mesenchymal transition (EMT) and cancer stem­like cell (CSC) traits in cocultured breast cancer cell lines. Transcription of these genes was further increased in cells exposed to exosomes shed from T2D patient­derived adipocytes or insulin-resistant adipocytes and required the epigenetic reader proteins BRD2 and BRD4 in recipient cells. The thrombospondin family protein TSP5, which is associated with cancer, was more abundant in exosomes from T2D or insulin-resistant adipocytes and partially contributed to EMT in recipient cells. Bioinformatic analysis of breast cancer patient tissue showed that greater coexpression of COMP (which encodes TSP5) and BRD2 or BRD3 correlated with poorer prognosis, specifically decreased distant metastasis­free survival. Our findings reveal a mechanism of exosome-mediated cross-talk between metabolically abnormal adipocytes and breast cancer cells that may promote tumor aggressiveness in patients with T2D.


Asunto(s)
Neoplasias de la Mama , Diabetes Mellitus Tipo 2 , Exosomas , Adipocitos , Mama , Femenino , Humanos
15.
Prostate Cancer Prostatic Dis ; 24(1): 268-277, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32690869

RESUMEN

BACKGROUND: Androgen deprivation therapies for the hormone-dependent stages of prostate cancer have become so effective that new forms of chemoresistant tumors are emerging in clinical practice, and require new targeted therapies in the metastatic setting. Yet there are important gaps in our understanding of the relevant transcriptional networks driving this process. Progression from localized to metastatic castration resistant prostate cancer (mCRPC) occurs as a result of accumulated resistance mechanisms that develop upon sustained androgen receptor (AR) suppression. Critical to this progression is the plastic nature by which prostate tumor cells transition from epithelial to mesenchymal states (EMT). METHODS: Here, using prostate cancer cell lines with different AR composition, we systematically manipulated somatic proteins of the Bromodomain and ExtraTerminal (BET) family (BRD2, BRD3, and BRD4) to determine which BET proteins influence EMT. We used the TCGA repository to correlate the expression of individual BET genes with key EMT genes and determined biochemical recurrence in 414 patients and progression free survival in 488 patients. RESULTS: We found that only BRD4-and not BRD2 or BRD3-regulates the expression of SNAI1 and SNAI2, and that the downregulation of these EMT transcription factors significantly increases E-cadherin expression. Furthermore, of the BET genes, only BRD4 correlates with survival outcomes in prostate cancer patients. Moreover, selective degradation of BRD4 protein with MZ1 ablates EMT (transcriptionally and morphologically) induced by TGFß signaling. CONCLUSIONS: Many relapsed/refractory tumors share a neuroendocrine transcriptional signature that had been relatively rare until highly successful antiandrogen drugs like abiraterone and enzalutamide came into widespread use. New therapeutic targets must therefore be developed. Our results identify key EMT genes regulated by BRD4, and offers a novel druggable target to treat mCRPC. BRD4-selective protein degraders offer a promising next generation approach to treat the emerging forms of chemoresistance in advanced prostate cancer.


Asunto(s)
Proteínas de Ciclo Celular/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Factores de Transcripción/genética , Proteínas de Ciclo Celular/biosíntesis , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Neoplásico/genética , Transducción de Señal , Factores de Transcripción/biosíntesis
16.
Adipocyte ; 9(1): 313-325, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32633194

RESUMEN

The size distribution of adipocytes in fat tissue provides important information about metabolic status and overall health of patients. Histological measurements of biopsied adipose tissue can reveal cardiovascular and/or cancer risks, to complement typical prognosis parameters such as body mass index, hypertension or diabetes. Yet, current methods for adipocyte quantification are problematic and insufficient. Methods such as hand-tracing are tedious and time-consuming, ellipse approximation lacks precision, and fully automated methods have not proven reliable. A semi-automated method fills the gap in goal-directed computational algorithms, specifically for high-throughput adipocyte quantification. Here, we design and develop a tool, AdipoCyze, which incorporates a novel semi-automated tracing algorithm, along with benchmark methods, and use breast histological images from the Komen for the Cure Foundation to assess utility. Speed and precision of the new approach are superior to conventional methods and accuracy is comparable, suggesting a viable option to quantify adipocytes, while increasing user flexibility. This platform is the first to provide multiple methods of quantification in a single tool. Widespread laboratory and clinical use of this program may enhance productivity and performance, and yield insight into patient metabolism, which may help evaluate risks for breast cancer progression in patients with comorbidities of obesity. ABBREVIATIONS: BMI: body mass index.


Asunto(s)
Adipocitos/patología , Tejido Adiposo/patología , Algoritmos , Neoplasias de la Mama/patología , Ensayos Analíticos de Alto Rendimiento , Histocitoquímica/métodos , Microambiente Tumoral , Tamaño de la Célula , Femenino , Humanos
17.
Cancer Lett ; 465: 45-58, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31473251

RESUMEN

Therapeutic strategies aiming to leverage anti-tumor immunity are being intensively investigated as they show promising results in cancer therapy. The PD-1/PD-L1 pathway constitutes an important target to restore functional anti-tumor immune response. Here, we report that BET protein inhibition suppresses PD-1/PD-L1 in triple-negative breast cancer. BET proteins control PD-1 expression in T cells, and PD-L1 in breast cancer cell models. BET protein targeting reduces T cell-derived interferon-γ production and signaling, thereby suppressing PD-L1 induction in breast cancer cells. Moreover, BET protein inhibition improves tumor cell-specific T cell cytotoxic function. Overall, we demonstrate that BET protein targeting represents a promising strategy to overcome tumor-reactive T cell exhaustion and improve anti-tumor immune responses, by reducing the PD-1/PD-L1 axis in triple-negative breast cancer.


Asunto(s)
Azepinas/farmacología , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas/antagonistas & inhibidores , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología
18.
J Cancer Surviv ; 13(5): 804-814, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31446591

RESUMEN

PURPOSE: Breast cancer-related lymphedema is an adverse effect of breast cancer surgery affecting nearly 30% of US breast cancer survivors (BCS). Our previous analysis showed that, even 12 years after cancer treatment, out-of-pocket healthcare costs for BCS with lymphedema remained higher than for BCS without lymphedema; however, only half of the cost difference was lymphedema-related. This follow-up analysis examines what, above and beyond lymphedema, contributes to cost differences. METHODS: This mixed methods study included 129 BCS who completed 12 monthly cost diaries in 2015. Using Cohen's d and multivariable analysis, we compared self-reported costs across 13 cost categories by lymphedema status. We elicited quotes about specific cost categories from in-person interviews with 40 survey participants. RESULTS: Compared with BCS without lymphedema, BCS with lymphedema faced 122% higher mean overall monthly direct costs ($355 vs $160); had significantly higher co-pay, medication, and other out-of-pocket costs, lower lotion costs; and reported inadequate insurance coverage and higher costs that persisted over time. Lotion and medication expenditure differences were driven by BCS' socioeconomic differences in ability to pay. CONCLUSIONS: Elevated patient costs for BCS with lymphedema are for more than lymphedema itself, suggesting that financial coverage for lymphedema treatment alone may not eliminate cost disparities. IMPLICATIONS FOR CANCER SURVIVORS: The economic challenges examined in this paper have long been a concern of BCS and advocates, with only recent attention by policy makers, researchers, and providers. BCS identified potential policy and programmatic solutions, including expanding insurance coverage and financial assistance for BCS across socioeconomic levels.


Asunto(s)
Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/economía , Supervivientes de Cáncer , Costo de Enfermedad , Linfedema/economía , Linfedema/etiología , Anciano , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/patología , Supervivientes de Cáncer/estadística & datos numéricos , Femenino , Gastos en Salud/estadística & datos numéricos , Humanos , Cobertura del Seguro/estadística & datos numéricos , Linfedema/epidemiología , Persona de Mediana Edad , Encuestas y Cuestionarios , Estados Unidos/epidemiología
19.
Mol Cancer Res ; 17(8): 1627-1638, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31110158

RESUMEN

The inevitable progression of advanced prostate cancer to castration resistance, and ultimately to lethal metastatic disease, depends on primary or acquired resistance to conventional androgen deprivation therapy (ADT) and accumulated resistance strategies to evade androgen receptor (AR) suppression. In prostate cancer cells, AR adaptations that arise in response to ADT are not singular, but diverse, and include gene amplification, mutation, and even complete loss of receptor expression. Collectively, each of these AR adaptations contributes to a complex, heterogeneous, ADT-resistant tumor. Here, we examined prostate cancer cell lines that model common castration-resistant prostate cancer (CRPC) subtypes, each with different AR composition, and focused on novel regulators of tumor progression, the Bromodomain and Extraterminal (BET) family of proteins. We found that BRD4 regulates cell migration across all models of CRPC, regardless of aggressiveness and AR status, whereas BRD2 and BRD3 only regulate migration and invasion in less aggressive models that retain AR expression or signaling. BRD4, a coregulator of gene transcription, controls migration and invasion through transcription of AHNAK, a large scaffolding protein linked to promotion of metastasis in a diverse set of cancers. Furthermore, treatment of CRPC cell lines with low doses of MZ1, a small-molecule, BRD4-selective degrader, inhibits metastatic potential. Overall, these results reveal a novel BRD4-AHNAK pathway that may be targetable to treat metastatic CRPC (mCRPC). IMPLICATIONS: BRD4 functions as the dominant regulator of CRPC cell migration and invasion through direct transcriptional regulation of AHNAK, which together offer a novel targetable pathway to treat metastatic CRPC.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/8/1627/F1.large.jpg.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Recurrencia Local de Neoplasia/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Factores de Transcripción/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Movimiento Celular , Proliferación Celular , Humanos , Masculino , Proteínas de la Membrana/genética , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Transducción de Señal , Tasa de Supervivencia , Factores de Transcripción/genética , Células Tumorales Cultivadas
20.
PLoS One ; 13(5): e0196755, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29738558

RESUMEN

Obesity-driven Type 2 diabetes (T2D) is a systemic inflammatory condition associated with cardiovascular disease. However, plasma cytokines and tissue inflammation that discriminate T2D risk in African American women with obese phenotypes are not well understood. We analyzed 64 circulating cytokines and chemokines in plasma of 120 African American women enrolled in the Black Women's Health Study. We used regression analysis to identify cytokines and chemokines associated with obesity, co-morbid T2D and hypertension, and compared results to obese women without these co-morbidities, as well as to lean women without the co-morbidities. We then used hierarchical clustering to generate inflammation signatures by combining the effects of identified cytokines and chemokines and summarized the signatures using an inflammation score. The analyses revealed six distinct signatures of sixteen cytokines/chemokines (P = 0.05) that differed significantly by prevalence of T2D (P = 0.004), obesity (P = 0.0231) and overall inflammation score (P < E-12). Signatures were validated in two independent cohorts of African American women with obesity: thirty nine subjects with no metabolic complications or with T2D and hypertension; and thirteen breast reduction surgical patients. The signatures in the validation cohorts closely resembled the distributions in the discovery cohort. We find that blood-based cytokine profiles usefully associate inflammation with T2D risks in vulnerable subjects, and should be combined with metabolism and obesity counselling for personalized risk assessment.


Asunto(s)
Negro o Afroamericano , Citocinas/sangre , Inflamación/etnología , Síndrome Metabólico/etnología , Obesidad/etnología , Negro o Afroamericano/estadística & datos numéricos , Biomarcadores , Quimiocinas/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/etnología , Femenino , Hemoglobina Glucada/análisis , Humanos , Hipertensión/sangre , Hipertensión/etnología , Hipoglucemiantes/uso terapéutico , Inflamación/sangre , Mamoplastia , Síndrome Metabólico/sangre , Metformina/uso terapéutico , Persona de Mediana Edad , Obesidad/sangre , Prevalencia , Índice de Severidad de la Enfermedad , Delgadez/sangre , Delgadez/etnología , Relación Cintura-Cadera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...