Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Antimicrob Agents Chemother ; : e0091124, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297640

RESUMEN

The global epidemic of drug-resistant Candida auris continues unabated. The initial report on pan-drug resistant (PDR) C. auris strains in a hospitalized patient in New York was unprecedented. PDR C. auris showed both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine. However, the factors that allow C. auris to acquire pan-drug resistance are not known. Therefore, we conducted a genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris. Among 1,570 genetic variants in drug-resistant C. auris, 299 were unique to PDR strains. The whole-genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed-a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 transcripts had no known homology. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or -enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients and increased utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modeling of a 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.

2.
Contraception ; : 110704, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293719

RESUMEN

OBJECTIVES: To identify limitations of abortion data in national Medicaid claims files by comparing abortion counts in Medicaid claims data with state abortion estimates. STUDY DESIGN: We used procedure (CPT, HCPCS) and drug (NDC) codes to identify abortion claims in 2009 and 2010 Medicaid Analytic eXtract (MAX) and 2020 Transformed Medicaid Statistical Information System Analytic File (TAF) data. We compared the number of abortions in MAX and TAF to the number of expected abortions covered by Medicaid overall and by state. Based on recent published research, we estimated expected Medicaid-covered abortions as 62% of total abortions in states that use state funds to cover abortion services for Medicaid enrollees and 0.9% in states that follow Hyde restrictions. RESULTS: MAX data identified 11% (38,668/345,480) of expected Medicaid-covered abortions in 2009 and 13% (44,528/330,801) of expected Medicaid-covered abortions in 2010. In 2020 TAF data, we found 25% (69,728/279,048) of the expected Medicaid-covered abortions. Among the 16 states that used state funds to cover abortions for Medicaid enrollees in 2020, the majority had <10% of expected Medicaid-covered abortions (n=8). Three states had between 10-50% of expected abortions. Four states had between 51-75% of expected abortions. One state did not have sufficient data to report. CONCLUSIONS: Abortion claims in MAX/TAF are an undercount of abortions covered by Medicaid and this undercount varies across states. Variation in reporting across states and across time likely introduces bias into any research trying to use MAX/TAF abortion claims across states and time. Researchers should use extreme caution when using MAX/TAF for abortion-related research. IMPLICATIONS: Researchers should use caution when using the Medicaid Analytic eXtract (MAX) and Transformed Medicaid Statistical Information System Analytic Files (TAF) for abortion-related research questions.

3.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948750

RESUMEN

The global epidemic of drug-resistant Candida auris continues unabated. We do not know what caused the unprecedented appearance of pan-drug resistant (PDR) Candida auris strains in a hospitalized patient in New York; the initial report highlighted both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine antifungal drugs. However, the factors that allow C. auris to acquire multi-drug resistance and pan-drug resistance are not known. Therefore, we conducted a comprehensive genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris . Among 1,570 genetic variants in drug-resistant C. auris , 299 were unique to PDR strains. The whole genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed - a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 candidate transcripts had no known homology among expressed transcripts found in other organisms. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or - enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients with an uptick in the utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modelling of 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.

4.
Neurology ; 102(12): e209417, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38833650

RESUMEN

BACKGROUND AND OBJECTIVES: Traumatic brain injury (TBI) is a concern for US service members and veterans (SMV), leading to heterogeneous psychological and cognitive outcomes. We sought to identify neuropsychological profiles of mild TBI (mTBI) and posttraumatic stress disorder (PTSD) among the largest SMV sample to date. METHODS: We analyzed cross-sectional baseline data from SMV with prior combat deployments enrolled in the ongoing Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study. Latent profile analysis identified symptom profiles using 35 indicators, including physical symptoms, depression, quality of life, sleep quality, postconcussive symptoms, and cognitive performance. It is important to note that the profiles were determined independently of mTBI and probable PTSD status. After profile identification, we examined associations between demographic variables, mTBI characteristics, and PTSD symptoms with symptom profile membership. RESULTS: The analytic sample included 1,659 SMV (mean age 41.1 ± 10.0 years; 87% male); among them 29% (n = 480) had a history of non-deployment-related mTBI only, 14% (n = 239) had deployment-related mTBI only, 36% (n = 602) had both non-deployment and deployment-related mTBI, and 30% (n = 497) met criteria for probable PTSD. A 6-profile model had the best fit, with separation on all indicators (p < 0.001). The model revealed distinct neuropsychological profiles, representing a combination of 3 self-reported functioning patterns: high (HS), moderate (MS), and low (LS), and 2 cognitive performance patterns: high (HC) and low (LC). The profiles were (1) HS/HC: n=301, 18.1%; (2) HS/LC: n=294, 17.7%; (3) MS/HC: n=359, 21.6%; (4) MS/LC: n=316, 19.0%; (5) LS/HC: n=228, 13.7%; and (6) LS/LC: n=161, 9.7%. SMV with deployment-related mTBI tended to be grouped into lower functioning profiles and were more likely to meet criteria for probable PTSD. Conversely, SMV with no mTBI exposure or non-deployment-related mTBI were clustered in higher functioning profiles and had a lower likelihood of meeting criteria for probable PTSD. DISCUSSION: Findings suggest varied symptom and functional profiles in SMV, influenced by injury context and probable PTSD comorbidity. Despite diagnostic challenges, comprehensive assessment of functioning and cognition can detect subtle differences related to mTBI and PTSD, revealing distinct neuropsychological profiles. Prioritizing early treatment based on these profiles may improve prognostication and support efficient recovery.


Asunto(s)
Conmoción Encefálica , Personal Militar , Pruebas Neuropsicológicas , Trastornos por Estrés Postraumático , Humanos , Masculino , Adulto , Femenino , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/psicología , Trastornos por Estrés Postraumático/etiología , Conmoción Encefálica/psicología , Conmoción Encefálica/complicaciones , Conmoción Encefálica/epidemiología , Estudios Transversales , Persona de Mediana Edad , Personal Militar/psicología , Estudios Longitudinales , Veteranos/psicología , Estudios Prospectivos , Despliegue Militar/psicología , Síndrome Posconmocional/psicología , Síndrome Posconmocional/epidemiología , Calidad de Vida
5.
Ann Neurol ; 96(2): 365-377, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38845484

RESUMEN

OBJECTIVE: The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS: Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS: Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION: This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios de Cohortes , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Anciano , Envejecimiento/patología , Envejecimiento Prematuro/diagnóstico por imagen , Envejecimiento Prematuro/patología
6.
J Neurol Phys Ther ; 48(3): 151-158, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38709008

RESUMEN

BACKGROUND AND PURPOSE: Sport-specific training may improve postural control, while repetitive head acceleration events (RHAEs) may compromise it. Understanding the neural mechanisms underlying postural control may contextualize changes due to training and RHAE. The goal of this study was to determine whether postural sway during the Balance Error Scoring System (BESS) is related to white matter organization (WMO) in collegiate athletes. METHODS: Collegiate soccer ( N = 33) and non-soccer athletes ( N = 44) completed BESS and diffusion tensor imaging. Postural sway during each BESS stance, fractional anisotropy (FA), and mean diffusivity (MD) were extracted for each participant. Partial least squares analyses determined group differences in postural sway and WMO and the relationship between postural sway and WMO in soccer and non-soccer athletes separately. RESULTS: Soccer athletes displayed better performance during BESS 6, with lower FA and higher MD in the medial lemniscus (ML) and inferior cerebellar peduncle (ICP), compared to non-soccer athletes. In soccer athletes, lower sway during BESS 2, 5, and 6 was associated with higher FA and lower MD in the corticospinal tract, ML, and ICP. In non-soccer athletes, lower sway during BESS 2 and 4 was associated with higher FA and lower MD in the ML and ICP. BESS 1 was associated with higher FA, and BESS 3 was associated with lower MD in the same tracts in non-soccer athletes. DISCUSSION AND CONCLUSIONS: Soccer and non-soccer athletes showed unique relationships between sway and WMO, suggesting that sport-specific exposures are partly responsible for changes in neurological structure and accompanying postural control performance and should be considered when evaluating postural control after injury.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content, available at: http://links.lww.com/JNPT/A472 ).


Asunto(s)
Atletas , Imagen de Difusión Tensora , Equilibrio Postural , Fútbol , Humanos , Equilibrio Postural/fisiología , Fútbol/fisiología , Masculino , Adulto Joven , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Femenino , Adolescente
7.
Front Immunol ; 15: 1380641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601144

RESUMEN

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


Asunto(s)
Subgrupos de Linfocitos B , Ratones , Animales , Subgrupos de Linfocitos B/metabolismo , Linfocitos B , Cadenas Ligeras de Inmunoglobulina/genética , Translocación Genética , Inmunoglobulina M , Recuento de Células
8.
Neuroimage Clin ; 42: 103585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38531165

RESUMEN

Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/fisiopatología , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Descanso/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Mapeo Encefálico/métodos , Mapeo Encefálico/normas
9.
Mil Med ; 189(9-10): e1938-e1946, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38401164

RESUMEN

INTRODUCTION: MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS: Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS: After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS: In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.


Asunto(s)
Conmoción Encefálica , Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Femenino , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/estadística & datos numéricos , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Estudios de Cohortes , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/diagnóstico por imagen , Traumatismos por Explosión/fisiopatología , Veteranos/estadística & datos numéricos , Persona de Mediana Edad
10.
J Allergy Clin Immunol Pract ; 12(6): 1558-1567, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423294

RESUMEN

BACKGROUND: Biologic modifiers targeting type 2 (T2) airway inflammation are effective in reducing asthma exacerbation. However, real-world and comparative effectiveness studies remain limited. OBJECTIVE: To examine and compare the real-world impact of anti-T2 asthma biologics. METHODS: In this retrospective, new user cohort study, we used the MarketScan, a Commercial Claims and Encounters Database, to identify adult patients with asthma who began to receive an anti-T2 biologic agent (anti-IL-5s, dupilumab, or omalizumab). We examined the influence of the biologic class on asthma exacerbation by comparing the average number of asthma exacerbation 1 year before and after biologic initiation. We conducted multivariable regression analyses to compare the effectiveness of these asthma biologics on reducing the incidence of asthma exacerbations within 18 months of the initial administration of biologics while controlling for demographic variables, comorbidities, and asthma severity. RESULTS: We identified 5,538 asthma patients who were new to taking an anti-T2 biologic [mean age [±SD], 45.6 (12.78) years; 65.8% female). Asthma biologics reduced asthma exacerbation by 11% to 47%, particularly among patients with two or more asthma exacerbations in the year preceding biologic initiation (31% to 65% reduction). Biologics were especially effective in reducing asthma-related hospitalizations (44.6% to 60%). After adjusting for baseline demographics, asthma medication, and comorbidities, dupilumab was associated with a lower estimated mean number of asthma exacerbation per year and lower adjusted odds ratio for developing an asthma exacerbation relative to other biologics (50% to 80% less likely). CONCLUSIONS: Anti-T2 asthma biologics reduced asthma exacerbation in real-word settings. Evidence supports growing literature reporting that dupilumab might have a more favorable impact on asthma exacerbation relative to other asthma biologics.


Asunto(s)
Antiasmáticos , Anticuerpos Monoclonales Humanizados , Asma , Productos Biológicos , Humanos , Asma/tratamiento farmacológico , Asma/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Productos Biológicos/uso terapéutico , Antiasmáticos/uso terapéutico , Estados Unidos/epidemiología , Estudios Retrospectivos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Omalizumab/uso terapéutico , Progresión de la Enfermedad
11.
J Neurotrauma ; 41(1-2): 171-185, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463061

RESUMEN

Treatment of youth concussion during the acute phase continues to evolve, and this has led to the emergence of guidelines to direct care. While symptoms after concussion typically resolve in 14-28 days, a portion (∼20%) of adolescents endorse persistent post-concussive symptoms (PPCS) beyond normal resolution. This report outlines a study implemented in response to the National Institute of Neurological Diseases and Stroke call for the development and initial clinical validation of objective biological measures to predict risk of PPCS in adolescents. We describe our plans for recruitment of a Development cohort of 11- to 17-year-old youth with concussion, and collection of autonomic, neurocognitive, biofluid, and imaging biomarkers. The most promising of these measures will then be validated in a separate Validation cohort of youth with concussion, and a final, clinically useful algorithm will be developed and disseminated. Upon completion of this study, we will have generated a battery of measures predictive of high risk for PPCS, which will allow for identification and testing of interventions to prevent PPCS in the most high-risk youth.


Asunto(s)
Conmoción Encefálica , Síndrome Posconmocional , Humanos , Adolescente , Niño , Síndrome Posconmocional/diagnóstico , Endofenotipos , Conmoción Encefálica/psicología
12.
J Neurotrauma ; 41(1-2): 32-40, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694678

RESUMEN

Mild traumatic brain injury (mTBI) is the most common form of brain injury. While most individuals recover from mTBI, roughly 20% experience persistent symptoms, potentially including reduced fine motor control. We investigate relationships between regional white matter organization and subcortical volumes associated with performance on the Grooved Pegboard (GPB) test in a large cohort of military Service Members and Veterans (SM&Vs) with and without a history of mTBI(s). Participants were enrolled in the Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. SM&Vs with a history of mTBI(s) (n = 847) and without mTBI (n = 190) underwent magnetic resonance imaging and the GPB test. We first examined between-group differences in GPB completion time. We then investigated associations between GPB performance and regional structural imaging measures (tractwise diffusivity, subcortical volumes, and cortical thickness) in SM&Vs with a history of mTBI(s). Lastly, we explored whether mTBI history moderated associations between imaging measures and GPB performance. SM&Vs with mTBI(s) performed worse than those without mTBI(s) on the non-dominant hand GPB test at a trend level (p < 0.1). Higher fractional anisotropy (FA) of tracts including the posterior corona radiata, superior longitudinal fasciculus, and uncinate fasciculus were associated with better GPB performance in the dominant hand in SM&Vs with mTBI(s). These findings support that the organization of several white matter bundles are associated with fine motor performance in SM&Vs. We did not observe that mTBI history moderated associations between regional FA and GPB test completion time, suggesting that chronic mTBI may not significantly influence fine motor control.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Personal Militar , Veteranos , Sustancia Blanca , Humanos , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/complicaciones , Sustancia Blanca/diagnóstico por imagen , Lesiones Encefálicas/complicaciones , Encéfalo
13.
Neuropsychopharmacology ; 49(3): 609-619, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38017161

RESUMEN

Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/psicología , Imagen por Resonancia Magnética , Encéfalo , Emociones , Corteza Prefrontal
14.
Sci Adv ; 9(51): eadh8310, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134275

RESUMEN

Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.


Asunto(s)
Sistema Inmunológico , Conducta Social , Ratones , Animales , Fenotipo
15.
Front Neurol ; 14: 1276437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156092

RESUMEN

Introduction: The relation between traumatic brain injury (TBI), its acute and chronic symptoms, and the potential for remote neurodegenerative disease is a priority for military research. Structural and functional connectivity (FC) of the basal ganglia, involved in motor tasks such as walking, are altered in some samples of Service Members and Veterans with TBI, but any behavioral implications are unclear and could further depend on the context in which the TBI occurred. Methods: In this study, FC from caudate and pallidum seeds was measured in Service Members and Veterans with a history of mild TBI that occurred during combat deployment, Service Members and Veterans whose mild TBI occurred outside of deployment, and Service Members and Veterans who had no lifetime history of TBI. Results: FC patterns differed for the two contextual types of mild TBI. Service Members and Veterans with deployment-related mild TBI demonstrated increased FC between the right caudate and lateral occipital regions relative to both the non-deployment mild TBI and TBI-negative groups. When evaluating the association between FC from the caudate and gait, the non-deployment mild TBI group showed a significant positive relationship between walking time and FC with the frontal pole, implicated in navigational planning, whereas the deployment-related mild TBI group trended towards a greater negative association between walking time and FC within the occipital lobes, associated with visuo-spatial processing during navigation. Discussion: These findings have implications for elucidating subtle motor disruption in Service Members and Veterans with deployment-related mild TBI. Possible implications for future walking performance are discussed.

16.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37966838

RESUMEN

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Adolescente , Humanos , Niño , Femenino , Masculino , Estudios de Cohortes , Estudios Retrospectivos , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Atrofia
17.
Bio Protoc ; 13(20): e4854, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37900100

RESUMEN

Whole-brain clearing and imaging methods are becoming more common in mice but have yet to become standard in rats, at least partially due to inadequate clearing from most available protocols. Here, we build on recent mouse-tissue clearing and light-sheet imaging methods and develop and adapt them to rats. We first used cleared rat brains to create an open-source, 3D rat atlas at 25 µm resolution. We then registered and imported other existing labeled volumes and made all of the code and data available for the community (https://github.com/emilyjanedennis/PRA) to further enable modern, whole-brain neuroscience in the rat. Key features • This protocol adapts iDISCO (Renier et al., 2014) and uDISCO (Pan et al., 2016) tissue-clearing techniques to consistently clear rat brains. • This protocol also decreases the number of working hours per day to fit in an 8 h workday. Graphical overview.

18.
Neuroimage ; 283: 120412, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858907

RESUMEN

BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Reproducibilidad de los Resultados , Macrodatos , Neuroimagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
19.
Neurology ; 101(9): e953-e965, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37479529

RESUMEN

BACKGROUND AND OBJECTIVES: Repeated impacts in high-contact sports such as American football can affect the brain's microstructure, which can be studied using diffusion MRI. Most imaging studies are cross-sectional, do not include low-contact players as controls, or lack advanced tract-specific microstructural metrics. We aimed to investigate longitudinal changes in high-contact collegiate athletes compared with low-contact controls using advanced diffusion MRI and automated fiber quantification. METHODS: We examined brain microstructure in high-contact (football) and low-contact (volleyball) collegiate athletes with up to 4 years of follow-up. Inclusion criteria included university and team enrollment. Exclusion criteria included history of neurosurgery, severe brain injury, and major neurologic or substance abuse disorder. We investigated diffusion metrics along the length of tracts using nested linear mixed-effects models to ascertain the acute and chronic effects of subconcussive and concussive impacts, and associations between diffusion changes with clinical, behavioral, and sports-related measures. RESULTS: Forty-nine football and 24 volleyball players (271 total scans) were included. Football players had significantly divergent trajectories in multiple microstructural metrics and tracts. Longitudinal increases in fractional anisotropy and axonal water fraction, and decreases in radial/mean diffusivity and orientation dispersion index, were present in volleyball but absent in football players (all findings |T-statistic|> 3.5, p value <0.0001). This pattern was present in the callosum forceps minor, superior longitudinal fasciculus, thalamic radiation, and cingulum hippocampus. Longitudinal differences were more prominent and observed in more tracts in concussed football players (n = 24, |T|> 3.6, p < 0.0001). An analysis of immediate postconcussion scans (n = 12) demonstrated a transient localized increase in axial diffusivity and mean/radial kurtosis in the uncinate and cingulum hippocampus (|T| > 3.7, p < 0.0001). Finally, within football players, those with high position-based impact risk demonstrated increased intracellular volume fraction longitudinally (T = 3.6, p < 0.0001). DISCUSSION: The observed longitudinal changes seen in football, and especially concussed athletes, could reveal diminished myelination, altered axonal calibers, or depressed pruning processes leading to a static, nondecreasing axonal dispersion. This prospective longitudinal study demonstrates divergent tract-specific trajectories of brain microstructure, possibly reflecting a concussive and repeated subconcussive impact-related alteration of white matter development in football athletes.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Voleibol , Humanos , Estudios Transversales , Estudios Longitudinales , Estudios Prospectivos , Universidades , Conmoción Encefálica/diagnóstico por imagen
20.
Neuropsychology ; 37(3): 233-236, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37011158

RESUMEN

This special issue brings together different methods for improving harmonization of existing (i.e., legacy) and future research data. We expect that when these methods are fully deployed, they will benefit research on various clinical conditions by allowing researchers to explore more nuanced questions using larger and more ethnically, socially, and economically diverse samples than previously available. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA