Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L468-L479, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36809074

RESUMEN

Propylene glycol (PG) is a common delivery vehicle for nicotine and flavorings in e-cigarette (e-cig) liquids and is largely considered safe for ingestion. However, little is known about its effects as an e-cig aerosol on the airway. Here, we investigated whether pure PG e-cig aerosols in realistic daily amounts impact parameters of mucociliary function and airway inflammation in a large animal model (sheep) in vivo and primary human bronchial epithelial cells (HBECs) in vitro. Five-day exposure of sheep to e-cig aerosols of 100% PG increased mucus concentrations (% mucus solids) of tracheal secretions. PG e-cig aerosols further increased the activity of matrix metalloproteinase-9 (MMP-9) in tracheal secretions. In vitro exposure of HBECs to e-cig aerosols of 100% PG decreased ciliary beating and increased mucus concentrations. PG e-cig aerosols further reduced the activity of large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. We show here for the first time that PG can be metabolized to methylglyoxal (MGO) in airway epithelia. PG e-cig aerosols increased levels of MGO and MGO alone reduced BK activity. Patch-clamp experiments suggest that MGO can disrupt the interaction between the major pore-forming BK subunit human Slo1 (hSlo1) and the gamma regulatory subunit LRRC26. PG exposures also caused a significant increase in mRNA expression levels of MMP9 and interleukin 1 beta (IL1B). Taken together, these data show that PG e-cig aerosols cause mucus hyperconcentration in sheep in vivo and HBECs in vitro, likely by disrupting the function of BK channels important for airway hydration.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Humanos , Animales , Ovinos , Canales de Potasio de Gran Conductancia Activados por el Calcio , Óxido de Magnesio , Aerosoles , Glicoles de Propileno
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675209

RESUMEN

Flavorings enhance the palatability of e-cigarettes (e-cigs), with menthol remaining a popular choice among e-cig users. Menthol flavor remains one of the only flavors approved by the United States FDA for use in commercially available, pod-based e-cigs. However, the safety of inhaled menthol at the high concentrations used in e-cigs remains unclear. Here, we tested the effects of menthol on parameters of mucociliary clearance (MCC) in air-liquid interface (ALI) cultures of primary airway epithelial cells. ALI cultures treated with basolateral menthol (1 mM) showed a significant decrease in ciliary beat frequency (CBF) and airway surface liquid (ASL) volumes after 24 h. Menthol nebulized onto the surface of ALI cultures similarly reduced CBF and increased mucus concentrations, resulting in decreased rates of mucociliary transport. Nebulized menthol further increased the expression of mucin 5AC (MUC5AC) and mRNA expression of the inflammatory cytokines IL1B and TNFA. Menthol activated TRPM8, and the effects of menthol on MCC and inflammation could be blocked by a specific TRPM8 antagonist. These data provide further evidence that menthol at the concentrations used in e-cigs could cause harm to the airways.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Depuración Mucociliar , Mentol/farmacología , Mucina 5AC/genética , Mucina 5AC/metabolismo , Células Epiteliales/metabolismo
3.
Front Pharmacol ; 13: 1012723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225570

RESUMEN

Vegetable glycerin (VG) and propylene glycol (PG) serve as delivery vehicles for nicotine and flavorings in most e-cigarette (e-cig) liquids. Here, we investigated whether VG e-cig aerosols, in the absence of nicotine and flavors, impact parameters of mucociliary function in human volunteers, a large animal model (sheep), and air-liquid interface (ALI) cultures of primary human bronchial epithelial cells (HBECs). We found that VG-containing (VG or PG/VG), but not sole PG-containing, e-cig aerosols reduced the activity of nasal cystic fibrosis transmembrane conductance regulator (CFTR) in human volunteers who vaped for seven days. Markers of inflammation, including interleukin-6 (IL6), interleukin-8 (IL8) and matrix metalloproteinase-9 (MMP9) mRNAs, as well as MMP-9 activity and mucin 5AC (MUC5AC) expression levels, were also elevated in nasal samples from volunteers who vaped VG-containing e-liquids. In sheep, exposures to VG e-cig aerosols for five days increased mucus concentrations and MMP-9 activity in tracheal secretions and plasma levels of transforming growth factor-beta 1 (TGF-ß1). In vitro exposure of HBECs to VG e-cig aerosols for five days decreased ciliary beating and increased mucus concentrations. VG e-cig aerosols also reduced CFTR function in HBECs, mechanistically by reducing membrane fluidity. Although VG e-cig aerosols did not increase MMP9 mRNA expression, expression levels of IL6, IL8, TGFB1, and MUC5AC mRNAs were significantly increased in HBECs after seven days of exposure. Thus, VG e-cig aerosols can potentially cause harm in the airway by inducing inflammation and ion channel dysfunction with consequent mucus hyperconcentration.

4.
ERJ Open Res ; 8(2)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35747232

RESUMEN

As opposed to smoking cessation with nicotine-replacement therapy and/or varenicline, nicotine-containing e-cigarette use does not improve some airway inflammatory markers. https://bit.ly/3FyqIt9.

5.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35446787

RESUMEN

Highly effective modulator therapies dramatically improve the prognosis for those with cystic fibrosis (CF). The triple combination of elexacaftor, tezacaftor, and ivacaftor (ETI) benefits many, but not all, of those with the most common F508del mutation in the CF transmembrane conductance regulator (CFTR). Here, we showed that poor sweat chloride concentration responses and lung function improvements upon initiation of ETI were associated with elevated levels of active TGF-ß1 in the upper airway. Furthermore, TGF-ß1 impaired the function of ETI-corrected F508del-CFTR, thereby increasing airway surface liquid (ASL) absorption rates and inducing mucus hyperconcentration in primary CF bronchial epithelial cells in vitro. TGF-ß1 not only decreased CFTR mRNA, but was also associated with increases in the mRNA expression of TNFA and COX2 and TNF-α protein. Losartan improved TGF-ß1-mediated inhibition of ETI-corrected F508del-CFTR function and reduced TNFA and COX2 mRNA and TNF-α protein expression. This likely occurred by improving correction of mutant CFTR rather than increasing its mRNA (without an effect on potentiation), thereby reversing the negative effects of TGF-ß1 and improving ASL hydration in the CF airway epithelium in vitro. Importantly, these effects were independent of type 1 angiotensin II receptor inhibition.


Asunto(s)
Fibrosis Quística , Benzodioxoles/farmacología , Ciclooxigenasa 2/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Losartán/farmacología , Mutación , ARN Mensajero , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
6.
ERJ Open Res ; 7(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532463

RESUMEN

The aim was to determine whether losartan reduces cigarette smoke (CS)-induced airway inflammation and mucus hypersecretion in an in vitro model and a small clinical trial. Primary human bronchial epithelial cells (HBECs) were differentiated at the air-liquid interface (ALI) and exposed to CS. Expression of transforming growth factor (TGF)-ß1 and the mucin MUC5AC, and expression or activity of matrix metalloproteinase (MMP)-9 were measured after CS exposure. Parameters of mucociliary clearance were evaluated by measuring airway surface liquid volumes, mucus concentrations, and conductance of cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated and voltage-dependent potassium (BK) channels. Nasal cells were collected from study participants and expression of MUC5AC, TGF-ß1, and MMP-9 mRNAs was measured before and after losartan treatment. In vitro, CS exposure of HBECs caused a significant increase in mRNA expression of MUC5AC and TGF-ß1 and MMP-9 activity and decreased CFTR and BK channel activities, thereby reducing airway surface liquid volumes and increasing mucus concentrations. Treatment of HBECs with losartan rescued CS-induced CFTR and BK dysfunction and caused a significant decrease in MUC5AC expression and mucus concentrations, partially by inhibiting TGF-ß signalling. In a prospective clinical study, cigarette smokers showed significantly reduced mRNA expression levels of MUC5AC, TGF-ß1, and MMP-9 in the upper airways after 2 months of losartan treatment. Our findings suggest that losartan may be an effective therapy to reduce inflammation and mucus hypersecretion in CS-induced chronic airway diseases.

7.
Eur Respir J ; 57(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32732330

RESUMEN

Large-conductance, Ca2+-activated, voltage-dependent K+ (BK) channel function is critical for adequate airway hydration and mucociliary function. In airway epithelia, BK function is regulated by its γ-subunit, leucine-rich repeat-containing protein 26 (LRRC26). Since patients with cystic fibrosis (CF)-related diabetes mellitus (CFRD) have worse lung function outcomes, this study determined the effects of hyperglycaemia on BK function in CF bronchial epithelial (CFBE) cells in vitro and evaluated the correlation between glycaemic excursions and mRNA expression of LRRC26 in the upper airways of CF and CFRD patients.CFBE cells were redifferentiated at the air-liquid interface (ALI) in media containing either 5.5 mM or 12.5 mM glucose. BK activity was measured in an Ussing chamber. Airway surface liquid (ASL) volume was estimated by meniscus scanning and inflammatory marker expression was measured by quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). CF patients were assessed by 7 days of continuous glucose monitoring (CGM). LRRC26 mRNA expression was measured by quantitative real-time PCR from nasal cells obtained at the end of glucose monitoring.BK currents were significantly decreased in CFBE cells cultured under high glucose. These cells revealed significantly lower ASL volumes and increased inflammation, including the receptor for advanced glycation endproducts (RAGE), compared to cells cultured in normal glucose. In vivo, nasal cell expression of LRRC26 mRNA was inversely correlated with hyperglycaemic excursions, consistent with the in vitro results.Our findings demonstrate that hyperglycaemia induces inflammation and impairs BK channel function in CFBE cells in vitro These data suggest that declining lung function in CFRD patients may be related to BK channel dysfunction.


Asunto(s)
Fibrosis Quística , Hiperglucemia , Glucemia , Automonitorización de la Glucosa Sanguínea , Fibrosis Quística/complicaciones , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio , Moco , Receptor para Productos Finales de Glicación Avanzada , Mucosa Respiratoria
8.
Am J Respir Crit Care Med ; 201(3): 313-324, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31613648

RESUMEN

Rationale: Despite therapeutic progress in treating cystic fibrosis (CF) airway disease, airway inflammation with associated mucociliary dysfunction remains largely unaddressed. Inflammation reduces the activity of apically expressed large-conductance Ca2+-activated and voltage-dependent K+ (BK) channels, critical for mucociliary function in the absence of CFTR (CF transmembrane conductance regulator).Objectives: To test losartan as an antiinflammatory therapy in CF using CF human bronchial epithelial cells and an ovine model of CF-like airway disease.Methods: Losartan's antiinflammatory effectiveness to rescue BK activity and thus mucociliary function was tested in vitro using primary, fully redifferentiated human airway epithelial cells homozygous for F508del and in vivo using a previously validated, now expanded pharmacologic sheep model of CF-like, inflammation-associated mucociliary dysfunction.Measurements and Main Results: Nasal scrapings from patients with CF showed that neutrophilic inflammation correlated with reduced expression of LRRC26 (leucine rich repeat containing 26), the γ subunit mandatory for BK function in the airways. TGF-ß1 (transforming growth factor ß1), downstream of neutrophil elastase, decreased mucociliary parameters in vitro. These were rescued by losartan at concentrations achieved by nebulization in the airway and oral application in the bloodstream: BK dysfunction recovered acutely and over time (the latter via an increase in LRRC26 expression), ciliary beat frequency and airway surface liquid volume improved, and mucus hyperconcentration and cellular inflammation decreased. These effects did not depend on angiotensin receptor blockade. Expanding on a validated and published nongenetic, CF-like sheep model, ewes inhaled CFTRinh172 and neutrophil elastase for 3 days, which resulted in prolonged tracheal mucus velocity reduction, mucus hyperconcentration, and increased TGF-ß1. Nebulized losartan rescued both mucus transport and mucus hyperconcentration and reduced TGF-ß1.Conclusions: Losartan effectively reversed CF- and inflammation-associated mucociliary dysfunction, independent of its angiotensin receptor blockade.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Fibrosis Quística/fisiopatología , Losartán/farmacología , Depuración Mucociliar/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Animales , Bronquios/citología , Células Cultivadas , Fibrosis Quística/tratamiento farmacológico , Modelos Animales de Enfermedad , Células Epiteliales , Femenino , Humanos , Inflamación/fisiopatología , Losartán/uso terapéutico , Ovinos
9.
Am J Respir Crit Care Med ; 200(9): 1134-1145, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31170808

RESUMEN

Rationale: Electronic cigarette (e-cig) use has been widely adopted under the perception of safety. However, possibly adverse effects of e-cig vapor in never-smokers are not well understood.Objectives: To test the effects of nicotine-containing e-cig vapors on airway mucociliary function in differentiated human bronchial epithelial cells isolated from never-smokers and in the airways of a novel, ovine large animal model.Methods: Mucociliary parameters were measured in human bronchial epithelial cells and in sheep. Systemic nicotine delivery to sheep was quantified using plasma cotinine levels, measured by ELISA.Measurements and Main Results:In vitro, exposure to e-cig vapor reduced airway surface liquid hydration and increased mucus viscosity of human bronchial epithelial cells in a nicotine-dependent manner. Acute nicotine exposure increased intracellular calcium levels, an effect primarily dependent on TRPA1 (transient receptor potential ankyrin 1). TRPA1 inhibition with A967079 restored nicotine-mediated impairment of mucociliary parameters including mucus transport in vitro. Sheep tracheal mucus velocity, an in vivo measure of mucociliary clearance, was also reduced by e-cig vapor. Nebulized e-cig liquid containing nicotine also reduced tracheal mucus velocity in a dose-dependent manner and elevated plasma cotinine levels. Importantly, nebulized A967079 reversed the effects of e-cig liquid on sheep tracheal mucus velocity.Conclusions: Our findings show that inhalation of e-cig vapor causes airway mucociliary dysfunction in vitro and in vivo. Furthermore, they suggest that the main nicotine effect on mucociliary function is mediated by TRPA1 and not nicotinic acetylcholine receptors.


Asunto(s)
Cigarrillo Electrónico a Vapor/farmacología , Células Epiteliales/efectos de los fármacos , Estimulantes Ganglionares/farmacología , Depuración Mucociliar/efectos de los fármacos , Nicotina/farmacología , Canal Catiónico TRPA1/metabolismo , Animales , Técnicas de Cultivo de Célula , Cotinina , Sistemas Electrónicos de Liberación de Nicotina , Células Epiteliales/metabolismo , Humanos , Ovinos , Vapeo
10.
Front Med (Lausanne) ; 6: 339, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039219

RESUMEN

α-klotho (KL) is an anti-aging protein and has been shown to exert anti-inflammatory and anti-oxidative effects in the lung and pulmonary diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. The current study investigated the direct effect of KL on the bronchial epithelium in regards to mucociliary clearance parameters. Primary human bronchial and murine tracheal epithelial cells, cultured, and differentiated at the air liquid interface (ALI), were treated with recombinant KL or infected with a lentiviral vector expressing KL. Airway surface liquid (ASL) volume, airway ion channel activities, and expression levels were analyzed. These experiments were paired with ex vivo analyses of mucociliary clearance in murine tracheas from klotho deficient mice and their wild type littermates. Our results showed that klotho deficiency led to impaired mucociliary clearance with a reduction in ASL volume in vitro and ex vivo. Overexpression or exogenous KL increased ASL volume, which was paralleled by increased activation of the large-conductance, Ca2+-activated, voltage-dependent potassium channel (BK) without effect on the cystic fibrosis transmembrane conductance regulator (CFTR). Furthermore, KL overexpression downregulated IL-8 levels and attenuated TGF-ß-mediated downregulation of LRRC26, the γ subunit of BK, necessary for its function in non-excitable cells. In summary, we show that KL regulates mucociliary function by increasing ASL volume in the airways possibly due to underlying BK activation. The KL mediated BK channel activation may be a potentially important target to design therapeutic strategies in inflammatory airway diseases when ASL volume is decreased.

11.
Sci Rep ; 7(1): 10506, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874823

RESUMEN

Mucociliary clearance (MCC) is a major airway host defence system that is impaired in patients with smoking-associated chronic bronchitis. This dysfunction is partially related to a decrease of airway surface liquid (ASL) volume that is in part regulated by apically expressed cystic fibrosis transmembrane conductance regulator (CFTR) and large-conductance, Ca2+-activated, and voltage dependent K+ (BK) channels. Here, data from human bronchial epithelial cells (HBEC) confirm that cigarette smoke not only downregulates CFTR activity but also inhibits BK channel function, thereby causing ASL depletion. Inhibition of signalling pathways involved in cigarette smoke-induced channel dysfunction reveals that CFTR activity is downregulated via Smad3 signalling whereas BK activity is decreased via the p38 cascade. In addition, pre-treatment with pirfenidone, a drug presently used to inhibit TGF-ß signalling in idiopathic pulmonary fibrosis, ameliorated BK dysfunction and ASL volume loss. Taken together, our results highlight the importance of not only CFTR but also BK channel function in maintaining ASL homeostasis and emphasize the possibility that pirfenidone could be employed as a novel therapeutic regimen to help improve MCC in smoking-related chronic bronchitis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Mucosa Respiratoria/metabolismo , Transducción de Señal , Proteína smad3/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Humanos , Moco/metabolismo , Fosforilación , Fumar/efectos adversos
12.
ACS Appl Mater Interfaces ; 9(11): 9592-9602, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28248092

RESUMEN

Highly efficient, durable, and earth-abundant solid sorbents are of paramount importance for practical carbon capture, storage, and utilization. Here, we report a novel and facile two-step strategy to synthesize a group of hierarchically structured porous MgO/C nanocomposites using flowerlike Mg-containing coordination polymer as a precursor. The new nanocomposites exhibit superb CO2 capture performance with sorption capacity up to 30.9 wt % (at 27 °C, 1 bar CO2), fast sorption kinetics, and long cycling life. Importantly, the achieved capacity is >14 times higher than that of commercial MgO, and favorably exceeds the highest value recorded to date for MgO-based sorbents under similar operating conditions. On the basis of the morphological and textural property analysis, together with CO2 sorption mechanism study using CO2-TPD and DRIFT techniques, the outstanding performance in CO2 uptake originates from unique features of this type of sorbent materials, which include hierarchical architecture, porous building blocks of nanosheets, high specific surface area (ca. 300 m2/g), evenly dispersed MgO nanocrystallites (ca. 3 nm) providing abundant active sites, and the in situ generated carbon matrix that acts as a stabilizer to prevent the growth and agglomeration of MgO crystallites. The nanocomposite system developed in this work shows good potential for future low-cost CO2 abatement and utilization.

13.
Faraday Discuss ; 192: 217-240, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27472014

RESUMEN

Carbon capture and storage (CCS) offers a possible solution to curb the CO2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO2 capture, such as the CaO-CaCO3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.

14.
Respir Res ; 16: 135, 2015 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-26521141

RESUMEN

BACKGROUND: Phosphodiesterases (PDEs) break down cAMP, thereby regulating intracellular cAMP concentrations and diffusion. Since PDE4 predominates in airway epithelial cells, PDE4 inhibitors can stimulate Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by increasing cAMP. Tobacco smoking and COPD are associated with decreased CFTR function and impaired mucociliary clearance (MCC). However, the effects of the PDE4 inhibitor roflumilast on smoke-induced mucociliary dysfunction have not been fully explored. METHODS: Primary normal human bronchial epithelial cells (NHBE) from non-smokers, cultured at the air-liquid interface (ALI) were used for most experiments. Cultures were exposed to cigarette smoke in a Vitrocell VC-10 smoking robot. To evaluate the effect of roflumilast on intracellular cAMP concentrations, fluorescence resonance energy transfer (FRET) between CFP- and YFP-tagged protein kinase A (PKA) subunits was recorded. Airway surface liquid (ASL) was measured using light refraction scanning and ciliary beat frequency (CBF) employing infrared differential interference contrast microscopy. Chloride conductance was measured in Ussing chambers and CFTR expression was quantified with qPCR. RESULTS: While treatment with 100 nM roflumilast had little effect alone, it increased intracellular cAMP upon stimulation with forskolin and albuterol in cultures exposed to cigarette smoke and in control conditions. cAMP baselines were lower in smoke-exposed cells. Roflumilast prolonged cAMP increases in smoke-exposed and control cultures. Smoke-induced reduction in functional, albuterol-mediated chloride conductance through CFTR was improved by roflumilast. ASL volumes also increased in smoke-exposed cultures in the presence of roflumilast while it did not in its absence. Cigarette smoke exposure decreased CBF, an effect rescued with roflumilast, particularly when used together with the long-acting ß-mimetic formoterol. Roflumilast also enhanced forskolin-induced CBF stimulation in ASL volume supplemented smoked and control cells, confirming the direct stimulatory effect of rising cAMP on ciliary function. In active smokers, CFTR mRNA expression was increased compared to non-smokers and ex-smokers. Roflumilast also increased CFTR mRNA levels in cigarette-smoke exposed cell cultures. CONCLUSIONS: Our results show that roflumilast can rescue smoke-induced mucociliary dysfunction by reversing decreased CFTR activity, augmenting ASL volume, and stimulating CBF, the latter particularly in combination with formoterol. As expected, CFTR mRNA expression was not indicative of apical CFTR function.


Asunto(s)
Aminopiridinas/farmacología , Benzamidas/farmacología , Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Depuración Mucociliar/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Humo , Fumar/efectos adversos , Albuterol/farmacología , Técnicas Biosensibles , Bronquios/metabolismo , Bronquios/fisiopatología , Células Cultivadas , Cloruros/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclopropanos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Fumarato de Formoterol/farmacología , Humanos , ARN Mensajero/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo , Transfección
15.
J Biol Chem ; 290(42): 25710-6, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26338706

RESUMEN

Transforming growth factor ß1 (TGF-ß1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-ß1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca(2+)- and voltage-dependent K(+) (BK) channels play an important role in this process. In this study, TGF-ß1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-ß1-induced BK dysfunction. TGF-ß1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-ß signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-ß1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-ß1 inhibitors.


Asunto(s)
Bronquios/patología , Fibrosis Quística/metabolismo , Canales de Potasio con Entrada de Voltaje/fisiología , Piridonas/farmacología , Factor de Crecimiento Transformador beta1/fisiología , Adenosina Trifosfato/metabolismo , Bronquios/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/patología , Técnicas de Silenciamiento del Gen , Humanos , Depuración Mucociliar/efectos de los fármacos , Proteínas de Neoplasias/genética , Piridonas/uso terapéutico , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores
16.
Am J Neurodegener Dis ; 4(2): 40-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26807343

RESUMEN

Transcription factors are involved to varying extents in the health and survival of neurons in the brain and a better understanding of their roles with respect to the pathogenesis of Alzheimer's disease (AD) could lead to the development of additional treatment strategies. Sp1 is a transcription factor that responds to inflammatory signals occurring in the AD brain. It is known to regulate genes with demonstrated importance in AD, and we have previously found it upregulated in the AD brain and in brains of transgenic AD model mice. To better understand the role of Sp1 in AD, we tested whether we could affect memory function (measured with a battery of behavioral tests discriminating different aspects of cognitive function) in a transgenic model of AD by pharmaceutical modulation of Sp1. We found that inhibition of Sp1 function in transgenic AD model mice increased memory deficits, while there were no changes in sensorimotor or anxiety tests. Aß42 and Aß40 peptide levels were significantly higher in the treated mice, indicating that Sp1 elevation in AD could be a functionally protective response. Circulating levels of CXCL1 (KC) decreased following treatment with mithramycin, while a battery of other cytokines, including IL-1α, IL-6, INF-γ and MCP-1, were unchanged. Gene expression levels for several genes important to neuronal health were determined by qRT-PCR, and none of these appeared to change at the transcriptional level.

17.
Am J Respir Cell Mol Biol ; 52(1): 65-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24978189

RESUMEN

Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl(-) and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers. ß2-adrenergic receptor (ß2-AR) agonists are widely used for managing chronic obstructive pulmonary disease, and can activate CFTR, stimulate ciliary beat frequency, and increase epithelial permeability, thereby stimulating MCC. Patients with chronic airway diseases and cigarette smokers demonstrate increased transforming growth factor (TGF)-ß1 signaling, which suppresses ß2-agonist-mediated CFTR activation and epithelial permeability increases. Restoring CFTR function in these diseases can restore the ability of ß2-agonists to enhance epithelial permeability. Human bronchial epithelial cells, fully redifferentiated at the air-liquid interface, were used for (14)C mannitol flux measurements, Ussing chamber experiments, and quantitative RT-PCR. ß2-agonists enhance epithelial permeability by activating CFTR via the ß2-AR/adenylyl cyclase/cAMP/protein kinase A pathway. TGF-ß1 inhibits ß2-agonist-mediated CFTR activation and epithelial permeability enhancement. Although TGF-ß1 down-regulates both ß2-AR and CFTR mRNA, functionally it only decreases CFTR activity. Cigarette smoke exposure inhibits ß2-agonist-mediated epithelial permeability increases, an effect reversed by blocking TGF-ß signaling. ß2-agonists enhance epithelial permeability via CFTR activation. TGF-ß1 signaling inhibits ß2-agonist-mediated CFTR activation and subsequent increased epithelial permeability, potentially limiting the ability of ß2-agonists to facilitate paracellular transport in disease states unless TGF-ß1 signaling is inhibited.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Bronquios/metabolismo , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Fumar/efectos adversos , Factor de Crecimiento Transformador beta1/metabolismo , Adenilil Ciclasas/metabolismo , Transporte Biológico Activo , Bronquios/patología , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/patología , Humanos , Permeabilidad , Receptores Adrenérgicos beta 2/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal , Fumar/metabolismo , Fumar/patología
18.
Plant Physiol ; 165(2): 705-714, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24760817

RESUMEN

Reducing excessive light harvesting in photosynthetic organisms may increase biomass yields by limiting photoinhibition and increasing light penetration in dense cultures. The cyanobacterium Synechocystis sp. PCC 6803 harvests light via the phycobilisome, which consists of an allophycocyanin core and six radiating rods, each with three phycocyanin (PC) discs. Via targeted gene disruption and alterations to the promoter region, three mutants with two (pcpcT→C) and one (ΔCpcC1C2:pcpcT→C) PC discs per rod or lacking PC (olive) were generated. Photoinhibition and chlorophyll levels decreased upon phycobilisome reduction, although greater penetration of white light was observed only in the PC-deficient mutant. In all strains cultured at high cell densities, most light was absorbed by the first 2 cm of the culture. Photosynthesis and respiration rates were also reduced in the ΔCpcC1C2:pcpcT→C and olive mutants. Cell size was smaller in the pcpcT→C and olive strains. Growth and biomass accumulation were similar between the wild-type and pcpcT→C under a variety of conditions. Growth and biomass accumulation of the olive mutant were poorer in carbon-saturated cultures but improved in carbon-limited cultures at higher light intensities, as they did in the ΔCpcC1C2:pcpcT→C mutant. This study shows that one PC disc per rod is sufficient for maximal light harvesting and biomass accumulation, except under conditions of high light and carbon limitation, and two or more are sufficient for maximal oxygen evolution. To our knowledge, this study is the first to measure light penetration in bulk cultures of cyanobacteria and offers important insights into photobioreactor design.

19.
Am J Physiol Lung Cell Mol Physiol ; 306(5): L453-62, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24414257

RESUMEN

Effective mucociliary clearance (MCC) depends in part on adequate airway surface liquid (ASL) volume to maintain an appropriate periciliary fluid height that allows normal ciliary activity. Apically expressed large-conductance, Ca(2+)-activated, and voltage-dependent K(+) (BK) channels provide an electrochemical gradient for Cl(-) secretion and thus play an important role for adequate airway hydration. Here we show that IFN-γ decreases ATP-mediated apical BK activation in normal human airway epithelial cells cultured at the air-liquid interface. IFN-γ decreased mRNA levels of KCNMA1 but did not affect total protein levels. Because IFN-γ upregulates dual oxidase (DUOX)2 and therefore H2O2 production, we hypothesized that BK inactivation could be mediated by BK oxidation. However, DUOX2 knockdown did not affect the IFN-γ effect on BK activity. IFN-γ changed mRNA levels of the BK ß-modulatory proteins KCNMB2 (increased) and KCNMB4 (decreased) as well as leucine-rich repeat-containing protein (LRRC)26 (decreased). Mallotoxin, a BK opener only in the absence of LRRC26, showed that BK channels lost their association with LRRC26 after IFN-γ treatment. Finally, IFN-γ caused a decrease in ciliary beating frequency that was immediately rescued by apical fluid addition, suggesting that it was due to ASL volume depletion. These data were confirmed with direct ASL measurements using meniscus scanning. Overexpression of KCNMA1, the pore-forming subunit of BK, overcame the reduction of ASL volume induced by IFN-γ. Key experiments were repeated in cystic fibrosis cells and showed the same results. Therefore, IFN-γ induces mucociliary dysfunction through BK inactivation.


Asunto(s)
Interferón gamma/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Depuración Mucociliar/fisiología , Proteínas del Tejido Nervioso/metabolismo , Mucosa Respiratoria/metabolismo , Proteínas de Arabidopsis/metabolismo , Bronquios/citología , Bronquios/metabolismo , Células Cultivadas , Cloruros/metabolismo , Fibrosis Quística/metabolismo , Oxidasas Duales , Humanos , Peróxido de Hidrógeno/metabolismo , Interferón gamma/genética , Interferón gamma/farmacología , Transferasas Intramoleculares/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Depuración Mucociliar/efectos de los fármacos , NADPH Oxidasas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Tráquea/citología , Tráquea/metabolismo
20.
Bioresour Technol ; 152: 464-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24326037

RESUMEN

Crude glycerol (CG) from biodiesel production is often contaminated with several compounds, including saponified fatty acids (SFAs). Photofermentative growth of Rhodopseudomonas palustris on glycerol leads to hydrogen production; however, R. palustris is inhibited by SFAs. This study examines inhibition of R. palustris by SFAs, finding that, with increasing concentration of SFA, growth rate falls, reaching zero at an SFA concentration of 0.2 mM. Methods for purifying CG were examined, namely (i) treatment with ethanol and activated carbon, (ii) pH adjustment, (iii) solvent extraction, and (iv) precipitation of the fatty acids with calcium. The rates of growth and production of hydrogen were investigated using CG treated by these methods. It was found that treatment with activated carbon, pH reduction, and calcium precipitation reduced inhibition, while solvent extraction was effective only when used in conjunction with pH adjustment. These treatments allow crude glycerol to be used for hydrogen production by R. palustris.


Asunto(s)
Biocombustibles , Glicerol/metabolismo , Hidrógeno/metabolismo , Rhodopseudomonas/metabolismo , Calcio/química , Ácidos Grasos/farmacología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Rhodopseudomonas/efectos de los fármacos , Rhodopseudomonas/crecimiento & desarrollo , Solventes , Especificidad por Sustrato/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...