Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37630974

RESUMEN

The Rho associated coiled-coil containing protein kinase (ROCK1 and ROCK2) and myotonic dystrophy-related Cdc-42 binding kinases (MRCKα and MRCKß) are critical regulators of cell proliferation and cell plasticity, a process intimately involved in cancer cell migration and invasion. Previously, we reported the discovery of a novel small molecule (DJ4) selective multi-kinase inhibitor of ROCK1/2 and MRCKα/ß. Herein, we further characterized the anti-proliferative and apoptotic effects of DJ4 in non-small cell lung cancer and triple-negative breast cancer cells. To further optimize the ROCK/MRCK inhibitory potency of DJ4, we generated a library of 27 analogs. Among the various structural modifications, we identified four additional active analogs with enhanced ROCK/MRCK inhibitory potency. The anti-proliferative and cell cycle inhibitory effects of the active analogs were examined in non-small cell lung cancer, breast cancer, and melanoma cell lines. The anti-proliferative effectiveness of DJ4 and the active analogs was further demonstrated against a wide array of cancer cell types using the NCI-60 human cancer cell line panel. Lastly, these new analogs were tested for anti-migratory effects in highly invasive MDA-MB-231 breast cancer cells. Together, our results demonstrate that selective inhibitors of ROCK1/2 (DJE4, DJ-Allyl) inhibited cell proliferation and induced cell cycle arrest at G2/M but were less effective in cell death induction compared with dual ROCK1/2 and MRCKα/ß (DJ4 and DJ110).

2.
Clin Epigenetics ; 13(1): 44, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632299

RESUMEN

BACKGROUND: Trimethylation of lysine 27 and dimethylation of lysine 9 of histone-H3 catalyzed by the histone methyltransferases EZH2 and G9a impede gene transcription in cancer. Our human bronchial epithelial (HBEC) pre-malignancy model studied the role of these histone modifications in transformation. Tobacco carcinogen transformed HBEC lines were characterized for cytosine DNA methylation, transcriptome reprogramming, and the effect of inhibiting EZH2 and G9a on the transformed phenotype. The effects of targeting EZH2 and G9a on lung cancer prevention was assessed in the A/J mouse lung tumor model. RESULTS: Carcinogen exposure induced transformation and DNA methylation of 12-96 genes in the four HBEC transformed (T) lines that was perpetuated in malignant tumors. In contrast, 506 unmethylated genes showed reduced expression in one or more HBECTs with many becoming methylated in tumors. ChIP-on-chip for HBEC2T identified 327 and 143 genes enriched for H3K27me3 and H3K9me2. Treatment of HBEC2T and HBEC13T with DZNep, a lysine methyltransferase inhibitor depleted EZH2, reversed transformation, and induced transcriptional reprogramming. The EZH2 small molecule inhibitor EPZ6438 also affected transformation and expression in HBEC2T, while a G9a inhibitor, UNC0642 was ineffective. Genetic knock down of EZH2 dramatically reduced carcinogen-induced transformation of HBEC2. Only DZNep treatment prevented progression of hyperplasia to adenomas in the NNK mouse lung tumor model through reducing EZH2 and affecting the expression of genes regulating cell growth and invasion. CONCLUSION: These studies demonstrate a critical role for EZH2 catalyzed histone modifications for premalignancy and its potential as a target for chemoprevention of lung carcinogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Código de Histonas/efectos de los fármacos , Neoplasias/prevención & control , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosilhomocisteinasa/antagonistas & inhibidores , Animales , Benzamidas/farmacología , Compuestos de Bifenilo/farmacología , Proliferación Celular/efectos de los fármacos , Islas de CpG , Metilación de ADN/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/farmacología , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Femenino , Código de Histonas/genética , Histona Metiltransferasas/antagonistas & inhibidores , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/farmacología , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Ratones , Morfolinas/farmacología , Fenotipo , Piridonas/farmacología , Transcriptoma/efectos de los fármacos
3.
JCI Insight ; 4(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31045581

RESUMEN

Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPR-associated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl ß-muricholic acid (AßM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AßM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs.


Asunto(s)
Alérgenos/inmunología , Asma/inmunología , Inflamación/inmunología , Hipersensibilidad Respiratoria/inmunología , Respuesta de Proteína Desplegada/inmunología , Animales , Ácidos y Sales Biliares/efectos adversos , Quimiocinas , Citocinas/metabolismo , Femenino , Humanos , Hipersensibilidad , Pulmón/inmunología , Pulmón/metabolismo , Metaplasia/inmunología , Metaplasia/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Deficiencias en la Proteostasis , Pyroglyphidae/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
4.
Biochem Pharmacol ; 130: 21-33, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28189725

RESUMEN

The anticancer properties of ceramide, a sphingolipid with potent tumor-suppressor properties, can be dampened via glycosylation, notably in multidrug resistance wherein ceramide glycosylation is characteristically elevated. Earlier works using the ceramide analog, C6-ceramide, demonstrated that the antiestrogen tamoxifen, a first generation P-glycoprotein (P-gp) inhibitor, blocked C6-ceramide glycosylation and magnified apoptotic responses. The present investigation was undertaken with the goal of discovering non-anti-estrogenic alternatives to tamoxifen that could be employed as adjuvants for improving the efficacy of ceramide-centric therapeutics in treatment of cancer. Herein we demonstrate that the tamoxifen metabolites, desmethyltamoxifen and didesmethyltamoxifen, and specific, high-affinity P-gp inhibitors, tariquidar and zosuquidar, synergistically enhanced C6-ceramide cytotoxicity in multidrug resistant HL-60/VCR acute myelogenous leukemia (AML) cells, whereas the selective estrogen receptor antagonist, fulvestrant, was ineffective. Active C6-ceramide-adjuvant combinations elicited mitochondrial ROS production and cytochrome c release, and induced apoptosis. Cytotoxicity was mitigated by introduction of antioxidant. Effective adjuvants markedly inhibited C6-ceramide glycosylation as well as conversion to sphingomyelin. Active regimens were also effective in KG-1a cells, a leukemia stem cell-like line, and in LoVo human colorectal cancer cells, a solid tumor model. In summary, our work details discovery of the link between P-gp inhibitors and the regulation and potentiation of ceramide metabolism in a pro-apoptotic direction in cancer cells. Given the active properties of these adjuvants in synergizing with C6-ceramide, independent of drug resistance status, stemness, or cancer type, our results suggest that the C6-ceramide-containing regimens could provide alternative, promising therapeutic direction, in addition to finding novel, off-label applications for P-gp inhibitors.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Ceramidas/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Ceramidas/química , Células HL-60 , Humanos
5.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795424

RESUMEN

Formation of the cytoplasmic viral assembly compartment (cVAC) is an important step for efficient human cytomegalovirus (HCMV) assembly. To do this, the virus must alter and repurpose the normal cellular balance of membrane and protein flux, a process that is not well understood. Although a recent screen identified three viral proteins essential for cVAC formation, less is known about the contribution of cellular factors. We show that HCMV infection increases the protein level of a cellular trafficking factor, syntaxin 5 (STX5), a member of the syntaxin family of SNARE proteins. STX5 is recruited to the cVAC in infected cells and is required for the efficient production of infectious virions. We find that STX5 is important for normal cVAC morphology and the proper localization of viral proteins. A previously identified inhibitor of trafficking, Retro94, causes the mislocalization of STX5, an altered cVAC morphology, and dispersal of viral proteins. The presence of Retro94 results in severely impaired production of infectious virions, with a decrease as great as 5 logs. We show that this inhibition is conserved among different strains of HCMV and the various cell types that support infection, as well as for murine CMV. Thus, our data identify a key cellular trafficking factor important for supporting HCMV infection. IMPORTANCE: Human cytomegalovirus (HCMV) infection causes severe disease and mortality in immunocompromised individuals, including organ transplant and AIDS patients. In addition, infection of a developing fetus may result in lifelong complications such as deafness and learning disabilities. Understanding in detail the processes involved in HCMV replication is important for developing novel treatments. One of these essential processes, assembly of infectious virions, takes places in the cytoplasmic viral assembly compartment. We identify a cellular protein, syntaxin 5, important for generating this compartment, and show that it is required for the efficient production of infectious virions. We also show that a small molecule that disrupts this protein also significantly reduces the amount of infectious virions that are generated. Thus, by pinpointing a cellular protein that is important in the replication cycle of HCMV, we identified a novel target that can be pursued for therapeutic intervention.


Asunto(s)
Citomegalovirus/efectos de los fármacos , Citoplasma/efectos de los fármacos , Interacciones Huésped-Patógeno , Proteínas Qa-SNARE/genética , Quinazolinas/farmacología , Virión/efectos de los fármacos , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Membrana Celular/virología , Citomegalovirus/metabolismo , Citomegalovirus/ultraestructura , Citoplasma/metabolismo , Citoplasma/ultraestructura , Citoplasma/virología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células Epiteliales/virología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Fibroblastos/virología , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacos , Proteínas Qa-SNARE/metabolismo , Transducción de Señal , Virión/metabolismo , Virión/ultraestructura , Ensamble de Virus/efectos de los fármacos , Ensamble de Virus/genética , Proteína Fluorescente Roja
6.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1243-59, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27154200

RESUMEN

Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases.


Asunto(s)
Antiasmáticos/farmacología , Antiinflamatorios/farmacología , Asma/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/farmacología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Antiasmáticos/uso terapéutico , Antiinflamatorios/uso terapéutico , Asma/inmunología , Evaluación Preclínica de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/inmunología , Femenino , Ratones Endogámicos C57BL , Pyroglyphidae/inmunología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Ácido Tauroquenodesoxicólico/uso terapéutico
7.
Cancer Lett ; 361(2): 185-96, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25796438

RESUMEN

Metastatic cancer cells show great plasticity in their migratory mechanisms. In this review we briefly describe the signal transduction pathways associated with the ROCK and MRCK kinases and their roles in cancer cell migration and in its plasticity. With respect to therapeutic strategies targeting metastatic cancers, selectively blocking a single target, such as ROCK or MRCK, can induce alternate modes of cancer cell migration (i.e. plasticity) making the treatment ineffective. To address the problem of plasticity, we will discuss the strategy of simultaneous targeting of both ROCK and MRCK as an effective anti-metastatic therapeutics.


Asunto(s)
Movimiento Celular/fisiología , Neoplasias/enzimología , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas Asociadas a rho/metabolismo , Humanos , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Quinasas Asociadas a rho/genética
8.
Cancer Lett ; 354(2): 299-310, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25172415

RESUMEN

Two structurally related protein kinase families, the Rho kinases (ROCK) and the myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK) are required for migration and invasion of cancer cells. We hypothesized that simultaneous targeting of these two kinase families might represent a novel therapeutic strategy to block the migration and invasion of metastatic cancers. To this end, we developed DJ4 as a novel small molecule inhibitor of these kinases. DJ4 potently inhibited activities of ROCK and MRCK in an ATP competitive manner. In cellular functional assays, DJ4 treatment significantly blocked stress fiber formation and inhibited migration and invasion of multiple cancer cell lines in a concentration dependent manner. Our results strongly indicate that DJ4 may be further developed as a novel anti-metastatic chemotherapeutic agent for multiple cancers.


Asunto(s)
Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Tiazolidinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Humanos , Invasividad Neoplásica , Neoplasias/enzimología , Neoplasias/patología
9.
Chem Biol Interact ; 161(2): 93-103, 2006 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-16620795

RESUMEN

Selenium, in the form of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) but not Se-enriched yeast (Se-yeast), was highly effective at inhibiting lung tumors induced by the tobacco specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice and at reducing NNK-induced DNA methylation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the lung. Our goal was to determine if p-XSC but not Se-yeast is effective at inducing levels of glutathione (GSH)-related antioxidants and reducing markers of GSH oxidation in the NNK-induced lung tumor model. In the first bioassay, 6-week-old mice were fed either control or experimental diets (containing 10 ppm as selenium from p-XSC or Se-yeast) and, beginning at 8 weeks of age, received NNK (3 micromol) by gavage once weekly for 8 weeks. After 18 weeks, p-XSC significantly reduced NNK-induced tumor burden by 74% (10.4 +/- 6.0 versus 2.7 +/- 1.5 tumors/mouse, P < 0.001) and tumor incidence from 96% to 68% (P < 0.01), whereas, Se-yeast had no effect. Lung GSH levels were unchanged by either NNK or Se-yeast, but were increased 70% in mice treated with both NNK and p-XSC (P < 0.01) and 41% in mice treated with p-XSC alone. In the second bioassay, the time course of effects of p-XSC was examined. As early as one week after initiation of p-XSC feeding lung and blood selenium levels were increased nearly six- and two-fold, respectively. Increases of 120% for GSH and 65% for Cys were observed in p-XSC groups compared to controls within one week after initiation of p-XSC feeding (P < 0.01). The levels of protein-bound:free GSH ratios and Cys ratios were significantly decreased in p-XSC-treated mice, regardless of NNK status, suggesting a decrease in the levels of oxidative stress. Altogether, these results indicate that p-XSC is a potent inducer of GSH and related thiol antioxidants in the lung leading to decreased levels of oxidative stress and suggest that p-XSC inhibits tumor formation, in part, by protecting against oxidative damage.


Asunto(s)
Antioxidantes/metabolismo , Transformación Celular Neoplásica/metabolismo , Glutatión/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevención & control , Nitrosaminas/farmacología , Compuestos de Organoselenio/farmacología , Alimentación Animal , Animales , Ácido Ascórbico/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/patología , Cisteína/metabolismo , Disulfuros/metabolismo , Femenino , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Ratones , Estructura Molecular , Nitrosaminas/química , Compuestos de Organoselenio/química , Selenio/sangre , Selenio/farmacocinética , Selenio/farmacología , Compuestos de Sulfhidrilo/metabolismo , Factores de Tiempo , Levaduras
10.
Chem Biol Interact ; 151(3): 193-202, 2005 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-15733540

RESUMEN

In a previous preliminary investigation, we reported on the excretion, tissue disposition and metabolism of the chemopreventive agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC) in the rat, but similar studies in the mouse have not been explored. Following the oral administration of p-XSC (50 micromol/kg body weight), selenium excretion in feces was comparable to that in urine in mice, but in rats, feces was the major route of excretion. Tetraselenocyclophane (TSC) was the major metabolite detected in mouse and rat feces. In both species, levels of selenium in exhaled air were negligible. At termination, in the mouse, the stomach had the highest selenium content followed by liver and blood, but lung and kidney contained negligible levels of selenium; in the rat, the selenium level in liver was the highest followed by kidney, stomach, blood and lung. The identification of TSC as a fecal metabolite in both species let us to postulate the following metabolic pathway: p-XSC-->glutathione conjugate (p-XSeSG)-->a selenol (p-XSeH)-->TSC. Since the glutathione conjugate appears to be the proximal precursor for the selenol metabolite that may be an important intermediate in cancer chemoprevention, we report for the first time the synthesis of p-XSeSG and its other potential metabolites, namely the cysteine- and N-acetylcysteine-conjugates of p-XSC. HPLC analysis of the urine and bile showed a few metabolites of p-XSC; none of which eluted with the synthetic standards described above. When we examined the conversion of p-XSC and p-XSeSG in vitro using rat cecal microflora, TSC was formed from p-XSeSG but not from p-XSC. The formation of TSC from p-XSC in vivo but not in vitro suggests that p-XSC needs to be metabolized to p-XSeSG or an intermediate derived from its further metabolism. Thus, p-XSeSG was given orally to rats and the results showed that the pattern of selenium excretion after p-XSeSG treatment was similar to that of p-XSC; TSC was also identified as a fecal metabolite of p-XSeSG. It may be that the conversion of p-XSeSG to TSC is too facile, or the mere conjugation of p-XSC with glutathione does not occur in rats and mice.


Asunto(s)
Anticarcinógenos/farmacología , Compuestos de Organoselenio/farmacología , Selenio/farmacocinética , Animales , Femenino , Cinética , Ratones , Ratones Endogámicos A , Estructura Molecular , Ratas , Selenio/toxicidad , Distribución Tisular
11.
Carcinogenesis ; 24(9): 1505-14, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12844480

RESUMEN

We employed cDNA microarray analysis to identify, in mammary adenocarcinomas induced by 7,12-dimethylbenz[a] anthracene (DMBA) in the rat, target genes as potential biomarkers for cancer chemoprevention by 1,4-phenylenebis(methylene)selenocyanate (p-XSC). Confirmation of selected genes was conducted by reverse transcription polymerase chain reactions (RT-PCR). The glutathione conjugate, p-XSeSG, a putative metabolite of p-XSC was also employed to test our hypothesis that p-XSeSG is a more effective cancer chemopreventive agent in the mammary cancer model than p-XSC. Mammary adenocarcinomas were induced by a single oral administration of 5 mg DMBA in 0.2 ml olive oil per rat at 50-55 days of age. Consistent with our previous reports, dietary p-XSC at a non-toxic dose (10 p.p.m. as selenium) significantly inhibited adenocarcinoma development, independent of feeding duration. Moreover, p-XSeSG appears to be just as effective as p-XSC when fed after DMBA administration, but was significantly less effective than p-XSC in inhibiting the induction of mammary adenocarcinomas when it was fed before DMBA and continued until termination. To delineate the molecular basis for cancer chemoprevention by organoselenium compounds, we focused our analysis on differential expression of genes known to be involved in DMBA metabolism, as well as those related to cell cycle, cell proliferation and apoptosis. p-XSC and p-XSeSG were significantly and equally effective in inhibiting levels of expression of genes associated with cytochrome P450 isoforms, but the former was more active than the latter in up-regulating the expression of those related to certain phase II enzymes. p-XSC and p-XSeSG were significantly more effective in the up-regulation of pro-apoptotic genes, such as p21CIP1/WAF1, p27KIP1, APO-1 and Caspase-3, while down-regulating cell growth regulatory genes, such as c-myc, cyclin D1, cyclin D2 and proliferating cell nuclear antigen (PCNA). To our knowledge, this is the first report that provides insights into the effects of p-XSC and p-XSeSG at the molecular level that may account for mammary cancer chemoprevention in vivo in the rat.


Asunto(s)
Adenocarcinoma/prevención & control , Glutatión/farmacología , Neoplasias Mamarias Experimentales/prevención & control , Compuestos de Organoselenio/farmacología , 9,10-Dimetil-1,2-benzantraceno , Adenocarcinoma/inducido químicamente , Animales , Carcinógenos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/análogos & derivados , Neoplasias Mamarias Experimentales/inducido químicamente , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos de Organoselenio/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...