Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(6): 2055-2061, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38332811

RESUMEN

Electrochemiluminescence (ECL) is evolving rapidly from a purely analytical technique into a powerful microscopy. Herein, we report the imaging of single cells by photoinduced ECL (PECL; λem = 620 nm) stimulated by an incident near-infrared light (λexc = 1050 nm). The cells were grown on a metal-insulator-semiconductor (MIS) n-Si/SiOx/Ir photoanode that exhibited stable and bright PECL emission. The large anti-Stokes shift allowed for the recording of well-resolved images of cells with high sensitivity. PECL microscopy is demonstrated at a remarkably low onset potential of 0.8 V; this contrasts with classic ECL, which is blind at this potential. Two imaging modes are reported: (i) photoinduced positive ECL (PECL+), showing the cell membranes labeled with the [Ru(bpy)3]2+ complex; and (ii) photoinduced shadow label-free ECL (PECL-) of cell morphology, with the luminophore in the solution. Finally, by adding a new dimension with the near-infrared light stimulus, PECL microscopy should find promising applications to image and study single photoactive nanoparticles and biological entities.

2.
ACS Appl Mater Interfaces ; 16(9): 11722-11729, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393292

RESUMEN

Infrared (IR) imaging devices that convert IR irradiation (invisible to the human eye) to a visible signal are based on solid-state components. Here, we introduce an alternative concept based on light-addressable electrochemistry (i.e., electrochemistry spatially confined under the action of a light stimulus) that involves the use of a liquid electrolyte. In this method, the projection of a near-IR image (λexc = 850 or 840 nm) onto a photoactive Si-based photoanode, immersed into a liquid phase, triggers locally the photoinduced electrochemiluminescence (PECL) of the efficient [Ru(bpy)3]2+-TPrA system. This leads to the local conversion of near-IR light to visible (λPECL = 632 nm) light. We demonstrate that compared to planar Si photoanodes, the use of a micropillar Si array leads to a large enhancement of local light generation and considerably improves the resolution of the PECL image by preventing photogenerated minority carriers from diffusing laterally. These results are important for the design of original light conversion devices and can lead to important applications in photothermal imaging and analytical chemistry.

3.
Small ; 20(14): e2308023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988641

RESUMEN

Electrochemiluminescence (ECL) is the generation of light induced by an electrochemical reaction, driven by electricity. Here, an all-optical ECL (AO-ECL) system is developped, which triggers ECL by the illumination of electrically autonomous "integrated" photoelectrochemical devices immersed in the electrolyte. Because these systems are made using small and cheap devices, they can be easily prepared and readily used by any laboratories. They are based on commercially available p-i-n Si photodiodes (≈1 € unit-1), coupled with well-established ECL-active and catalytic materials, directly coated onto the component leads by simple and fast wet processes. Here, a Pt coating (known for its high activity for reduction reactions) and carbon paint (known for its optimal ECL emission properties) are deposited at cathode and anode leads, respectively. In addition to its optimized light absorption properties, using the commercial p-i-n Si photodiode eliminates the need for a complicated manufacturing process. It is shown that the device can emit AO-ECL by illumination with polychromatic (simulated sunlight) or monochromatic (near IR) light sources to produce visible photons (425 nm) that can be easily observed by the naked eye or recorded with a smartphone camera. These low-cost off-grid AO-ECL devices open broad opportunities for remote photodetection and portable bioanalytical tools.

4.
J Phys Chem Lett ; 15(1): 148-155, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38149790

RESUMEN

Pt/InGa/n-Si/SiOx/Pt devices were prepared by using standard chemical and sputtering processes. These systems are diodes comprising a frontside photoactive metal-insulator-semiconductor (MIS) n-Si/SiOx/Pt junction and a backside Pt/InGa/n-Si Ohmic contact. Pt/InGa/n-Si/SiOx/Pt was first characterized by dark-solid-state electrical and impedance measurements. Then, each side of the device was investigated by electrochemical means in the dark and under near-IR illumination at 850 nm in the luminol-H2O2 electrochemiluminescence (ECL) electrolyte. The results suggested the possibility of triggering an all-optical ECL (AO-ECL) at Pt/InGa/n-Si/SiOx/Pt. This was confirmed by studying AO-ECL at the monolithic, all-integrated Pt/InGa/n-Si/SiOx/Pt device, immersed in the ECL electrolyte. The conversion process can occur with good stability and the intensity of the visible emission (440 nm) depends on tunable parameters such as the illumination power density, O2 concentration, or the concentration of added H2O2. These results are important for the next developments of AO-ECL in sensing and microscopy.

5.
Chem Commun (Camb) ; 59(82): 12262-12265, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37753612

RESUMEN

Localized photoinduced electrochemiluminescence (PECL) is studied on photoanodes composed of Ir microbands deposited on n-Si/SiOx. We demonstrate that PECL microscopy precisely imaged the hole-driven heterogeneous photoelectrochemical reactivity. The method is promising for elucidating the local activity of photoelectrodes that are employed in solar energy conversion.

6.
J Am Chem Soc ; 145(31): 17420-17426, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498003

RESUMEN

Electrochemiluminescence (ECL) is widely employed for medical diagnosis and imaging. Despite its remarkable analytical performances, the technique remains intrinsically limited by the essential need for an external power supply and electrical wires for electrode connections. Here, we report an electrically autonomous solution leading to a paradigm change by designing a fully integrated all-optical wireless monolithic photoelectrochemical device based on a nanostructured Si photovoltaic junction modified with catalytic coatings. Under illumination with light ranging from visible to near-infrared, photogenerated holes induce the oxidation of the ECL reagents and thus the emission of visible ECL photons. The blue ECL emission is easily viewed with naked eyes and recorded with a smartphone. A new light emission scheme is thus introduced where the ECL emission energy (2.82 eV) is higher than the excitation energy (1.18 eV) via an intermediate electrochemical process. In addition, the mapping of the photoelectrochemical activity by optical microscopy reveals the minority carrier interfacial transfer mechanism at the nanoscale. This breakthrough provides an all-optical strategy for generalizing ECL without the need for electrochemical setups, electrodes, wiring constraints, and specific electrochemical knowledge. This simplest ECL configuration reported so far opens new opportunities to develop imaging and wireless bioanalytical systems such as portable point-of-care sensing devices.

7.
Angew Chem Int Ed Engl ; 62(16): e202218574, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36811514

RESUMEN

Here we report on a label-free electrochemiluminescence (ECL) microscopy using exceptionally low concentrations of the [Ru(bpy)3 ]2+ luminophore. This work addresses the central point of the minimal concentration of the ECL luminophore required to image single entities. We demonstrate the possibility to record ECL images of cells and mitochondria at concentrations down to nM and pM. This is 7 orders of magnitude lower than classically-used concentrations and corresponds to a few hundreds of luminophores diffusing around the biological entities. Yet, it produces remarkably sharp negative optical contrast ECL images, as demonstrated by structural similarity index metric analyses and supported by predictions of the ECL image covering time. Finally, we show that the reported approach is a simple, fast, and highly sensitive method, which opens new avenues for ultrasensitive ECL imaging and ECL reactivity at the single molecule level.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos
8.
J Phys Chem Lett ; 13(24): 5538-5544, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35695813

RESUMEN

Wireless electrochemical systems constitute a rapidly developing field. Herein, photoinduced electrochemiluminescence (PECL) is studied at Si-based closed bipolar electrodes (BPEs) for designing anti-Stokes systems that can convert IR into visible photons, without direct electrical contact. We show that protection of the anodic emitting pole of the BPE allows the triggering of bright and longstanding emission under the synergetic actions of an external bias and IR illumination. Photoactive n- and p-type Si BPEs are studied with front-side and back-side illumination, respectively, and nonphotoactive n+-Si BPEs are studied in the dark. Two electrochemiluminescent (ECL) systems ([Ru(bpy)3]2+/TPrA and L-012) are tested, and we show that the onset bias and the anti-Stokes shift can be controlled by the ECL system that is employed. These advances, rationalized by simulations, will be useful for the design of original PECL systems for chemical sensing or photodetection.

9.
Chem Commun (Camb) ; 58(47): 6686-6688, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35621023

RESUMEN

Anti-Stokes photoinduced electrochemiluminescence (PECL) converts infrared photons to visible photons and is usually triggered at a narrow band gap-protected photoanode. Here, we report the first example of PECL with the model [Ru(bpy)3]2+/benzoyl peroxide system at a bare p-type Si photocathode. The reported PECL system, which allows a notable decrease of the cathodic potential required for ECL generation, should open new opportunities for imaging and light-addressable devices.

10.
Angew Chem Int Ed Engl ; 61(20): e202201865, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35233901

RESUMEN

Photoinduced electrochemiluminescence (PECL) allows the electrochemically assisted conversion of low-energy photons into high-energy photons at an electrode surface. This concept is expected to have important implications, however, it is dramatically limited by the stability of the surface, impeding future developments. Here, a series of metal-insulator-semiconductor (MIS) junctions, using photoactive n-type Si (n-Si) as a light absorber covered by a few-nanometer-thick protective SiOx /metal (SiOx /M, with M=Ru, Pt, and Ir) overlayers are investigated for upconversion PECL of the model co-reactant system involving the simultaneous oxidation of tris(bipyridine)ruthenium(II) and tri-n-propylamine. We show that n-Si/SiOx /Pt and n-Si/SiOx /Ir exhibit high photovoltages and record stabilities in operation (35 h for n-Si/SiOx /Ir) for the generation of intense PECL with an anti-Stokes shift of 218 nm. We also demonstrate that these surfaces can be employed for spatially localized PECL. These unprecedented performances are extremely promising for future applications of PECL.

11.
Angew Chem Int Ed Engl ; 60(34): 18742-18749, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34115447

RESUMEN

Mitochondria are the subcellular bioenergetic organelles. The analysis of their morphology and topology is essential to provide useful information on their activity and metabolism. Herein, we report a label-free shadow electrochemiluminescence (ECL) microscopy based on the spatial confinement of the ECL-emitting reactive layer to image single living mitochondria deposited on the electrode surface. The ECL mechanism of the freely-diffusing [Ru(bpy)3 ]2+ dye with the sacrificial tri-n-propylamine coreactant restrains the light-emitting region to a micrometric thickness allowing to visualize individual mitochondria with a remarkable sharp negative optical contrast. The imaging approach named "shadow ECL" (SECL) reflects the negative imprint of the local diffusional hindrance of the ECL reagents by each mitochondrion. The statistical analysis of the colocalization of the shadow ECL spots with the functional mitochondria revealed by classical fluorescent biomarkers, MitoTracker Deep Red and the endogenous intramitochondrial NADH, validates the reported methodology. The versatility and extreme sensitivity of the approach are further demonstrated by visualizing single mitochondria, which remain hardly detectable with the usual biomarkers. Finally, by alleviating problems of photobleaching and phototoxicity associated with conventional microscopy methods, SECL microscopy should find promising applications in the imaging of subcellular structures.


Asunto(s)
Técnicas Electroquímicas , Mediciones Luminiscentes , Mitocondrias/química , Biomarcadores/análisis , Colorantes Fluorescentes/química , Compuestos Organometálicos/química , Propilaminas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...