Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Cell Death Dis ; 14(9): 613, 2023 09 19.
Article En | MEDLINE | ID: mdl-37723219

The ß2-Adrenergic receptor (ß2-ARs) is a cell membrane-spanning G protein-coupled receptors (GPCRs) physiologically involved in stress-related response. In many cancers, the ß2-ARs signaling drives the tumor development and transformation, also promoting the resistance to the treatments. In HNSCC cell lines, the ß2-AR selective inhibition synergistically amplifies the cytotoxic effect of the MEK 1/2 by affecting the p38/NF-kB oncogenic pathway and contemporary reducing the NRF-2 mediated antioxidant cell response. In this study, we aimed to validate the anti-tumor effect of ß2-AR blockade and the synergism with MEK/ERK and EGFR pathway inhibition in a pre-clinical orthotopic mouse model of HNSCC. Interestingly, we found a strong ß2-ARs expression in the tumors that were significantly reduced after prolonged treatment with ß2-Ars inhibitor (ICI) and EGFR mAb Cetuximab (CTX) in combination. The ß2-ARs down-regulation correlated in mice with a significant tumor growth delay, together with the MAPK signaling switch-off caused by the blockade of the MEK/ERK phosphorylation. We also demonstrated that the administration of ICI and CTX in combination unbalanced the cell ROS homeostasis by blocking the NRF-2 nuclear translocation with the relative down-regulation of the antioxidant enzyme expression. Our findings highlighted for the first time, in a pre-clinical in vivo model, the efficacy of the ß2-ARs inhibition in the treatment of the HNSCC, remarkably in combination with CTX, which is the standard of care for unresectable HNSCC.


Antioxidants , Head and Neck Neoplasms , Animals , Mice , Squamous Cell Carcinoma of Head and Neck , Oxidative Stress , Antibodies , Cetuximab/pharmacology , Cetuximab/therapeutic use , ErbB Receptors , Mitogen-Activated Protein Kinase Kinases
2.
Medicina (Kaunas) ; 59(8)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37629738

Soft tissue regeneration holds significant promise for addressing various clinical challenges, ranging from craniofacial and oral tissue defects to blood vessels, muscle, and fibrous tissue regeneration. Mesenchymal stem cells (MSCs) have emerged as a promising tool in regenerative medicine due to their unique characteristics and potential to differentiate into multiple cell lineages. This comprehensive review explores the role of MSCs in different aspects of soft tissue regeneration, including their application in craniofacial and oral soft tissue regeneration, nerve regeneration, blood vessel regeneration, muscle regeneration, and fibrous tissue regeneration. By examining the latest research findings and clinical advancements, this article aims to provide insights into the current state of MSC-based therapies in soft tissue regenerative medicine.


Mesenchymal Stem Cells , Regenerative Medicine , Humans , Muscles
3.
Front Bioeng Biotechnol ; 10: 934997, 2022.
Article En | MEDLINE | ID: mdl-36466352

Osteoarthritis is a very disabling disease that can be treated with both non-pharmacological and pharmacological approaches. In the last years, pharmaceutical-grade chondroitin sulfate (CS) and glucosamine emerged as symptomatic slow-acting molecules, effective in pain reduction and improved function in patients affected by osteoarthritis. CS is a sulfated glycosaminoglycan that is currently produced mainly by extraction from animal tissues, and it is commercialized as a pharmaceutical-grade ingredient and/or food supplement. However, public concern on animal product derivatives has prompted the search for alternative non-extractive production routes. Thus, different approaches were established to obtain animal-free natural identical CS. On the other hand, the unsulfated chondroitin, which can be obtained via biotechnological processes, demonstrated promising anti-inflammatory properties in vitro, in chondrocytes isolated from osteoarthritic patients. Therefore, the aim of this study was to explore the potential of chondroitin, with respect to the better-known CS, in an in vivo mouse model of knee osteoarthritis. Results indicate that the treatment with biotechnological chondroitin (BC), similarly to CS, significantly reduced the severity of mechanical allodynia in an MIA-induced osteoarthritic mouse model. Decreased cartilage damage and a reduction of inflammation- and pain-related biochemical markers were also observed. Overall, our data support a beneficial activity of biotechnological unsulfated chondroitin in the osteoarthritis model tested, thus suggesting BC as a potential functional ingredient in pharmaceuticals and nutraceuticals with the advantage of avoiding animal tissue extraction.

4.
Methods Mol Biol ; 2535: 211-220, 2022.
Article En | MEDLINE | ID: mdl-35867233

The ability of the cancer cells to survive hostile environment depends on their cellular stress response mechanisms. These mechanisms also help them to develop resistance to chemotherapies. Autophagy and more specifically organelle specific autophagy is one such adaptive mechanism that promotes drug resistance in cancer cells. Endoplasmic reticulum-specific autophagy or ER-phagy has been more recently described to overcome ER-stress through the degradation of damaged ER. ER-resident proteins such as FAM134B act as ER-phagy receptors to specifically target damaged ER for degradation through autophagy. Moreover, we had recently deciphered that ER-phagy facilitates cancer cell survival during hypoxic stress and we predict that this process could play a critical role in the development of drug resistance in cancer cells. Therefore, here, we provide a lay description of how ER-phagy could be investigated biochemically by Western blot analysis and silencing ER-phagy receptor genes using small interfering RNAs (siRNA).


Endoplasmic Reticulum , Neoplasms , Autophagy/physiology , Drug Resistance, Neoplasm/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Membrane Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
5.
Cell Death Dis ; 13(4): 357, 2022 04 18.
Article En | MEDLINE | ID: mdl-35436985

In the tumor microenvironment, cancer cells experience hypoxia resulting in the accumulation of misfolded/unfolded proteins largely in the endoplasmic reticulum (ER). Consequently, ER proteotoxicity elicits unfolded protein response (UPR) as an adaptive mechanism to resolve ER stress. In addition to canonical UPR, proteotoxicity also stimulates the selective, autophagy-dependent, removal of discrete ER domains loaded with misfolded proteins to further alleviate ER stress. These mechanisms can favor cancer cell growth, metastasis, and long-term survival. Our investigations reveal that during hypoxia-induced ER stress, the ER-phagy receptor FAM134B targets damaged portions of ER into autophagosomes to restore ER homeostasis in cancer cells. Loss of FAM134B in breast cancer cells results in increased ER stress and reduced cell proliferation. Mechanistically, upon sensing hypoxia-induced proteotoxic stress, the ER chaperone BiP forms a complex with FAM134B and promotes ER-phagy. To prove the translational implication of our mechanistic findings, we identified vitexin as a pharmacological agent that disrupts FAM134B-BiP complex, inhibits ER-phagy, and potently suppresses breast cancer progression in vivo.


Autophagy , Breast Neoplasms , Autophagy/physiology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Female , Humans , Hypoxia/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Tumor Microenvironment
6.
J Exp Clin Cancer Res ; 41(1): 20, 2022 Jan 11.
Article En | MEDLINE | ID: mdl-35016717

BACKGROUND: The long non-coding RNA (lncRNA), MALAT1, plays a key role in the development of different cancers, and its expression is associated with worse prognosis in patients. However, its mechanism of action and its regulation are not well known in prostate cancer (PCa). A general mechanism of action of lncRNAs is their interaction with other epigenetic regulators including microRNAs (miRNAs). METHODS: Using lentiviral stable miRNA transfection together with cell biology functional assays and gene expression/target analysis, we investigated the interaction between MALAT1 and miR-423-5p, defined as a target with in silico prediction analysis, in PCa. RESULTS: Through bioinformatic analysis of data available from TCGA, we have found that MALAT1 expression correlates with high Gleason grade, metastasis occurrence, and reduced survival in PCa patients. These findings were validated on a TMA of PCa showing a significant correlation between MALAT1 expression with both stage and grading. We report that, in PCa cells, MALAT1 expression and activity is regulated by miR-423-5p that binds MALAT1, downregulates its expression and inhibits its activity in promoting proliferation, migration, and invasion. Using NanoString analysis, we unraveled downstream cell pathways that were affected by miR-423-5p expression and MALAT1 downregulation and identified several alterations in genes that are involved in metastatic response and angiogenic pathways. In addition, we showed that the overexpression of miR-423-5p increases survival and decreases metastases formation in a xenograft mouse model. CONCLUSIONS: We provide evidence on the role of MALAT1 in PCa tumorigenesis and progression. Also, we identify a direct interaction between miR-423-5p and MALAT1, which results in the suppression of MALAT1 action in PCa.


MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Animals , Cell Proliferation , Humans , Male , Mice , Mice, Nude , Neoplasm Metastasis , Transfection
7.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article En | MEDLINE | ID: mdl-36614061

Recently, we have demonstrated that miR-423-5p modulates the growth and metastases of prostate cancer (PCa) cells both in vitro and in vivo. Here, we have studied the effects of miR-423-5p on the proteomic profile in order to identify its intracellular targets and the affected pathways. Applying a quantitative proteomic approach, we analyzed the effects on the protein expression profile of miR-423-5p-transduced PCa cells. Moreover, a computational analysis of predicted targets of miR-423-5p was carried out by using several target prediction tools. Proteomic analysis showed that 63 proteins were differentially expressed in miR-423-5-p-transfected LNCaP cells if compared to controls. Pathway enrichment analysis revealed that stable overexpression of miR-423-5p in LNCaP PCa cells induced inhibition of glycolysis and the metabolism of several amino acids and a parallel downregulation of proteins involved in transcription and hypoxia, the immune response through Th17-derived cytokines, inflammation via amphorin signaling, and ion transport. Moreover, upregulated proteins were related to the S phase of cell cycle, chromatin modifications, apoptosis, blood coagulation, and calcium transport. We identified seven proteins commonly represented in miR-423-5p targets and differentially expressed proteins (DEPs) and analyzed their expression and influence on the survival of PCa patients from publicly accessible datasets. Overall, our findings suggest that miR-423-5p induces alterations in glucose and amino acid metabolism in PCa cells paralleled by modulation of several tumor-associated processes.


MicroRNAs , Prostatic Neoplasms , Male , Humans , MicroRNAs/metabolism , Proteomics , Prostatic Neoplasms/metabolism , Prostate/pathology , Amino Acids/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic
8.
Pain ; 163(8): 1590-1602, 2022 08 01.
Article En | MEDLINE | ID: mdl-34862336

ABSTRACT: Neuropathic pain has long-term consequences in affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. In this study, we used the spared nerve injury (SNI) model to characterize the development of sensory and aversive components of neuropathic pain and to determine their electrophysiological impact across prefrontal cortex and limbic regions. Moreover, we evaluated the regulation of several genes involved in immune response and inflammation triggered by SNI. We showed that SNI led to sensorial hypersensitivity (cold and mechanical stimuli) and depressive-like behavior lasting 12 months after nerve injury. Of interest, changes in nonemotional cognitive tasks (novel object recognition and Y maze) showed in 1-month SNI mice were not evident normal in the 12-month SNI animals. In vivo electrophysiology revealed an impaired long-term potentiation at prefrontal cortex-nucleus accumbens core pathway in both the 1-month and 12-month SNI mice. On the other hand, a reduced neural activity was recorded in the lateral entorhinal cortex-dentate gyrus pathway in the 1-month SNI mice, but not in the 12-month SNI mice. Finally, we observed the upregulation of specific genes involved in immune response in the hippocampus of 1-month SNI mice, but not in the 12-month SNI mice, suggesting a neuroinflammatory response that may contribute to the SNI phenotype. These data suggest that distinct brain circuits may drive the psychiatric components of neuropathic pain and pave the way for better investigation of the long-term consequences of peripheral nerve injury for which most of the available drugs are to date unsatisfactory.


Neuralgia , Peripheral Nerve Injuries , Animals , Disease Models, Animal , Hippocampus/metabolism , Hyperalgesia/metabolism , Long-Term Potentiation , Mice , Neuralgia/genetics , Neuralgia/metabolism , Neuronal Plasticity , Peripheral Nerve Injuries/metabolism
9.
Cells ; 10(11)2021 10 26.
Article En | MEDLINE | ID: mdl-34831122

BACKGROUND: Hyaluronans exist in different forms, accordingly with molecular weight and degree of crosslinking. Here, we tested the capability to induce osteogenic differentiation in hDPSCs (human dental pulp stem cells) of three hyaluronans forms: linear pharmaceutical-grade hyaluronans at high and (HHA) low molecular weight (LHA) and hybrid cooperative complexes (HCC), containing both sizes. METHODS: hDPSCs were treated with HHA, LHA, HCC for 7, 14 and 21 days. The effects of hyaluronans on osteogenic differentiation were evaluated by qRT-PCR and WB of osteogenic markers and by Alizarin Red S staining. To identify the involved pathway, CD44 was analyzed by immunofluorescence, and YAP/TAZ expression was measured by qRT-PCR. Moreover, YAP/TAZ inhibitor-1 was used, and the loss of function of YAP/TAZ was evaluated by qRT-PCR, WB and immunofluorescence. RESULTS: We showed that all hyaluronans improves osteogenesis. Among these, HCC is the main inducer of osteogenesis, along with overexpression of bone related markers and upregulating CD44. We also found that this biological process is subordinate to the activation of YAP/TAZ pathway. CONCLUSIONS: We found that HA's molecular weight can have a relevant impact on HA performance for bone regeneration, and we unveil a new molecular mechanism by which HA acts on stem cells.


Bone and Bones/cytology , Cell Differentiation , Dental Pulp/cytology , Hyaluronic Acid/pharmacology , Signal Transduction , Stem Cells/cytology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/metabolism , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Separation , Cells, Cultured , Gene Expression Regulation/drug effects , Humans , Hyaluronan Receptors/metabolism , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Osteopontin/genetics , Osteopontin/metabolism , Stem Cells/drug effects , Stem Cells/metabolism
10.
PLoS Pathog ; 17(9): e1009943, 2021 09.
Article En | MEDLINE | ID: mdl-34555129

Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.


Glycolysis/physiology , Host-Pathogen Interactions/physiology , Macrophages/metabolism , Phagosomes/metabolism , Salmonella Infections, Animal/metabolism , Animals , Gene Expression Profiling , Metabolomics , Mice , Salmonella typhimurium/metabolism
11.
Transl Oncol ; 14(8): 101134, 2021 Aug.
Article En | MEDLINE | ID: mdl-34051619

In recent years, it has been evidenced that the human transcriptome includes several types of non-coding RNAs (ncRNAs) that are mainly involved in the regulation of different cellular processes. Among ncRNAs, long-non-coding RNAs (lncRNAs) are defined as longer than 200 nucleotides and have been shown to be involved in several physiological and pathological events, including immune system regulation and cancer. Cancer stem cells (CSCs) are defined as a population of cancer cells that possess characteristics, such as resistance to standard treatments, cancer initiation, ability to undergo epithelial-to-mesenchymal transition, and the ability to invade, spread, and generate metastases. The cancer microenvironment, together with genetic and epigenetic factors, is fundamental for CSC maintenance and tumor growth and progression. Unsurprisingly, lncRNAs have been involved in both CSC biology and cancer progression, prognosis and recurrence. Here we review the most recent literature on IncRNAs involvement in CSC biology and function.

12.
Curr Hematol Malig Rep ; 16(2): 218-233, 2021 04.
Article En | MEDLINE | ID: mdl-33939108

PURPOSE OF REVIEW: Both chimeric antigen receptor (CAR) T cells and T cell-engaging antibodies (BiAb) have been approved for the treatment of hematological malignancies. However, despite targeting the same antigen, they represent very different classes of therapeutics, each with its distinct advantages and drawbacks. In this review, we compare BiAb and CAR T cells with regard to their mechanism of action, manufacturing, and clinical application. In addition, we present novel strategies to overcome limitations of either approach and to combine the best of both worlds. RECENT FINDINGS: By now there are multiple approaches combining the advantages of BiAb and CAR T cells. A major area of research is the application of both formats for solid tumor entities. This includes improving the infiltration of T cells into the tumor, counteracting immunosuppression in the tumor microenvironment, targeting antigen heterogeneity, and limiting off-tumor on-target effects. BiAb come with the major advantage of being an off-the-shelf product and are more controllable because of their half-life. They have also been reported to induce less frequent and less severe adverse events. CAR T cells in turn demonstrate superior response rates, have the potential for long-term persistence, and can be additionally genetically modified to overcome some of their limitations, e.g., to make them more controllable.


Antibodies, Bispecific/immunology , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antibodies, Bispecific/genetics , Antigens, Neoplasm/immunology , Genetic Engineering , Humans , Immunotherapy, Adoptive/adverse effects , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/etiology , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
13.
J Exp Clin Cancer Res ; 40(1): 15, 2021 Jan 06.
Article En | MEDLINE | ID: mdl-33407715

BACKGROUND: Despite the advancements in new therapies for colorectal cancer (CRC), chemotherapy still constitutes the mainstay of the medical treatment. For this reason, new strategies to increase the efficacy of chemotherapy are desirable. Poly-ADP-Ribose Polymerase inhibitors (PARPi) have shown to increase the activity of DNA damaging chemotherapeutics used in the treatment of CRC, however previous clinical trials failed to validate these results and pointed out dose-limiting toxicities that hamper the use of such combinations in unselected CRC patients. Nevertheless, in these studies little attention was paid to the mutational status of homologous recombination repair (HRR) genes. METHODS: We tested the combination of the PARPi niraparib with either 5-fluorouracil, oxaliplatin or irinotecan (SN38) in a panel of 12 molecularly annotated CRC cell lines, encompassing the 4 consensus molecular subtypes (CMSs). Synergism was calculated using the Chou-Talalay method for drug interaction. A correlation between synergism and genetic alterations in genes involved in homologous recombination (HR) repair was performed. We used clonogenic assays, mice xenograft models and patient-derived 3D spheroids to validate the results. The induction of DNA damage was studied by immunofluorescence. RESULTS: We showed that human CRC cell lines, as well as patient-derived 3D spheroids, harboring pathogenic ATM mutations are significantly vulnerable to PARPi/chemotherapy combination at low doses, regardless of consensus molecular subtypes (CMS) and microsatellite status. The strongest synergism was shown for the combination of niraparib with irinotecan, and the presence of ATM mutations was associated to a delay in the resolution of double strand breaks (DSBs) through HRR and DNA damage persistence. CONCLUSIONS: This work demonstrates that a numerically relevant subset of CRCs carrying heterozygous ATM mutations may benefit from the combination treatment with low doses of niraparib and irinotecan, suggesting a new potential approach in the treatment of ATM-mutated CRC, that deserves to be prospectively validated in clinical trials.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Indazoles/therapeutic use , Irinotecan/therapeutic use , Piperidines/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Female , Humans , Indazoles/pharmacology , Irinotecan/pharmacology , Mice , Mice, Nude , Mutation , Piperidines/pharmacology
14.
Front Immunol ; 11: 588724, 2020.
Article En | MEDLINE | ID: mdl-33117402

SARS-CoV-2 infection is a new threat to global public health in the 21st century (2020), which has now rapidly spread around the globe causing severe pneumonia often linked to Acute Respiratory Distress Syndrome (ARDS) and hyperinflammatory syndrome. SARS-CoV-2 is highly contagious through saliva droplets. The structural analysis suggests that the virus enters human cells through the ligation of the spike protein to angiotensin-converting enzyme 2 (ACE2). The progression of Covid-19 has been divided into three main stages: stage I-viral response, stage II-pulmonary phase, and stage III-hyperinflammation phase. Once the patients enter stage III, it will likely need ventilation and it becomes difficult to manage. Thus, it will be of paramount importance to find therapies to prevent or slow down the progression of the disease toward stage III. The key event leading to hyperinflammation seems to be the activation of Th-17 immunity response and Cytokine storm. B2-adrenergic receptors (B2ARs) are expressed on airways and on all the immune cells such as macrophages, dendritic cells, B and T lymphocytes. Blocking (B2AR) has been proven, also in clinical settings, to reduce Th-17 response and negatively modulate inflammatory cytokines including IL-6 while increasing IFNγ. Non-selective beta-blockers are currently used to treat several diseases and have been proven to reduce stress-induced inflammation and reduce anxiety. For these reasons, we speculate that targeting B2AR in the early phase of Covid-19 might be beneficial to prevent hyperinflammation.


Adrenergic beta-2 Receptor Antagonists/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Receptors, Adrenergic, beta-2/drug effects , Respiratory Distress Syndrome/drug therapy , Betacoronavirus/drug effects , COVID-19 , Cytokine Release Syndrome/pathology , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Pandemics , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Th17 Cells/immunology
15.
Cell Death Dis ; 11(10): 850, 2020 10 13.
Article En | MEDLINE | ID: mdl-33051434

The ß2-Adrenergic receptor (ß2-AR) is a G protein-coupled receptor (GPCR), involved in the development of many cancers, among which HNSCC. In this contest, ß2-AR signaling interacts with different pathways, such as PI3K and MAPK, commonly activated by TK receptors. For this reason, TK blockade is one of the most adopted therapeutic strategies in HNSCC patients. In our study we investigated the effects of the ß2-AR blocking in HNSCC cell lines, using the selective inhibitor ICI118,551 (ICI), in combination with the MAPK inhibitor U0126. We found that ICI leads to the blocking of p38 and NF-kB oncogenic pathways, strongly affecting also the ERK and PI3K pathways. Cotreatment with U0126 displays a synergic effect on cell viability and pathway alteration. Interestingly, we found that the ß2-AR blockade affects Nrf2-Keap1 stability and its nuclear translocation leading to a drastic ROS increase and oxidative stress. Our results are confirmed by a TCGA dataset analysis, showing that NFE2L2 gene is commonly overexpressed in HNSC, and correlated with a lower survival rate. In our system, the PI3K pathway inhibition culminated in the blocking of pro-survival autophagy, a mechanism normally adopted by cancer cells to became less responsive to the therapies. The mTOR expression, commonly upregulated in HNSC, was reduced in patients with disease-recurrence. It is well known that mTOR has a strong autophagy inhibition effect, therefore its downregulation promoted pro-survival autophagy, with a related increase recurrence rate. Our findings highlight for the first time the key role of ß2-AR and related pathway in HNSCC cell proliferation and drug resistance, proposing it as a valuable therapeutic molecular target.


Adrenergic beta-2 Receptor Antagonists/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Head and Neck Neoplasms/drug therapy , NF-E2-Related Factor 2/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Adrenergic, beta-2/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Adrenergic beta-2 Receptor Antagonists/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Propanolamines/administration & dosage , Propanolamines/pharmacology , Protein Kinase Inhibitors/administration & dosage , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
16.
Cell Death Dis ; 11(6): 419, 2020 06 04.
Article En | MEDLINE | ID: mdl-32499535

Allogeneic mesenchymal stem cells (MSCs) are immunoprivileged and are being investigated in phase I and phase II clinical trials to treat different degenerative and autoimmune diseases. In spite of encouraging outcome of initial trials, the long-term poor survival of transplanted cells in the host tissue has declined the overall enthusiasm. Recent analyses of allogeneic MSCs based studies confirm that after transplantation in the hypoxic or ischemic microenvironment of diseased tissues, MSCs become immunogenic and are rejected by recipient immune system. The immunoprivilege of MSCs is preserved by absence or negligible expression of cell surface antigen, human leukocyte antigen (HLA)-DRα. We found that in normoxic MSCs, 26S proteasome degrades HLA-DRα and maintains immunoprivilege of MSCs. The exposure to hypoxia leads to inactivation of 26S proteasome and formation of immunoproteasome in MSCs, which is associated with upregulation and activation of HLA-DRα, and as a result, MSCs become immunogenic. Furthermore, inhibition of immunoproteasome formation in hypoxic MSCs preserves the immunoprivilege. Therefore, hypoxia-induced shift in the phenotype of proteasome from 26S toward immunoproteasome triggers loss of immunoprivilege of allogeneic MSCs. The outcome of the current study may provide molecular targets to plan interventions to preserve immunoprivilege of allogeneic MSCs in the hypoxic or ischemic environment.


Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/pathology , Proteasome Endopeptidase Complex/immunology , Cell Hypoxia/immunology , Down-Regulation , HLA-DR alpha-Chains/metabolism , Humans , Phenotype , Protein Subunits/metabolism , Proteolysis , Up-Regulation
17.
Cancer Treat Rev ; 88: 102043, 2020 Aug.
Article En | MEDLINE | ID: mdl-32505806

Autophagy is a self-degradative cellular process, involved in stress response such as starvation, hypoxia, and oxidative stress. This mechanism balances macro-molecule recycling to regulate cell homeostasis. In cancer, autophagy play a role in the development and progression, while several studies describe it as one of the key processes in drug resistance. In the last years, in addition to standard anti-cancer treatments such as chemotherapies and irradiation, targeted therapy became one of the most adopted strategies in clinical practices, mainly due to high specificity and reduced side effects. However, similar to standard treatments, drug resistance is the main challenge in most patients. Here, we summarize recent studies that investigated the role of autophagy in drug resistance after targeted therapy in different types of cancers. We highlight positive results and limitations of pre-clinical and clinical studies in which autophagy inhibitors are used in combination with targeted therapies.


Drug Resistance, Neoplasm , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Autophagy/drug effects , Autophagy/physiology , Humans , Immunotoxins/pharmacology , Molecular Targeted Therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology
18.
High Throughput ; 9(1)2020 Feb 11.
Article En | MEDLINE | ID: mdl-32054005

Molecular profiling of a tumor allows the opportunity to design specific therapies which are able to interact only with cancer cells characterized by the accumulation of several genomic aberrations. This study investigates the usefulness of next-generation sequencing (NGS) and mutation-specific analysis methods for the detection of target genes for current therapies in non-small-cell lung cancer (NSCLC), metastatic colorectal cancer (mCRC), and melanoma patients. We focused our attention on EGFR, BRAF, KRAS, and BRAF genes for NSCLC, melanoma, and mCRC samples, respectively. Our study demonstrated that in about 2% of analyzed cases, the two techniques did not show the same or overlapping results. Two patients affected by mCRC resulted in wild-type (WT) for BRAF and two cases with NSCLC were WT for EGFR according to PGM analysis. In contrast, these samples were mutated for the evaluated genes using the therascreen test on Rotor-Gene Q. In conclusion, our experience suggests that it would be appropriate to confirm the WT status of the genes of interest with a more sensitive analysis method to avoid the presence of a small neoplastic clone and drive the clinician to correct patient monitoring.

19.
J Exp Clin Cancer Res ; 38(1): 210, 2019 May 22.
Article En | MEDLINE | ID: mdl-31118051

BACKGROUND: Metformin, a biguanide, is one of the most commonly prescribed treatments for type 2 diabetes and has recently been recommended as a potential drug candidate for advanced cancer therapy. Although Metformin has antiproliferative and proapoptotic effects on breast cancer, the heterogenous nature of this disease affects the response to metformin leading to the activation of pro-invasive signalling pathways that are mediated by the focal adhesion kinase PYK2 in pure HER2 phenotype breast cancer. METHODS: The effect of metformin on different breast cancer cell lines, representing the molecular heterogenicity of the disease was investigated using in vitro proliferation and apoptosis assays. The activation of PYK2 by metformin in pure HER2 phenotype (HER2+/ER-/PR-) cell lines was investigated by microarrays, quantitative real time PCR and immunoblotting. Cell migration and invasion PYK2-mediated and in response to metformin were determined by wound healing and invasion assays using HER2+/ER-/PR- PYK2 knockdown cell lines. Proteomic analyses were used to determine the role of PYK2 in HER2+/ER-/PR- proliferative, migratory and invasive cellular pathways and in response to metformin. The association between PYK2 expression and HER2+/ER-/PR- patients' cancer-specific survival was investigated using bioinformatic analysis of PYK2 expression from patient gene expression profiles generated by the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study. The effect of PYK2 and metformin on tumour initiation and invasion of HER2+/ER-/PR- breast cancer stem-like cells was performed using the in vitro stem cell proliferation and invasion assays. RESULTS: Our study showed for the first time that pure HER2 breast cancer cells are more resistant to metformin treatment when compared with the other breast cancer phenotypes. This drug resistance was associated with the activation of PTK2B/PYK2, a well-known mediator of signalling pathways involved in cell proliferation, migration and invasion. The role of PYK2 in promoting invasion of metformin resistant HER2 breast cancer cells was confirmed through investigating the effect of PYK2 knockdown and metformin on cell invasion and by proteomic analysis of associated cellular pathways. We also reveal a correlation between high level of expression of PYK2 and reduced survival in pure HER2 breast cancer patients. Moreover, we also report a role of PYK2 in tumour initiation and invasion-mediated by pure HER2 breast cancer stem-like cells. This was further confirmed by demonstrating a correlation between reduced survival in pure HER2 breast cancer patients and expression of PYK2 and the stem cell marker CD44. CONCLUSIONS: We provide evidence of a PYK2-driven pro-invasive potential of metformin in pure HER2 cancer therapy and propose that metformin-based therapy should consider the molecular heterogeneity of breast cancer to prevent complications associated with cancer chemoresistance, invasion and recurrence in treated patients.


Breast Neoplasms/drug therapy , Focal Adhesion Kinase 2/genetics , Metformin/pharmacology , Receptor, ErbB-2/genetics , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Metformin/adverse effects , Neoplasm Invasiveness/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Proteomics , Signal Transduction
20.
J Exp Clin Cancer Res ; 38(1): 160, 2019 Apr 12.
Article En | MEDLINE | ID: mdl-30987650

BACKGROUND: Glucose-6-phospate dehydrogenase (G6PD) is the limiting enzyme of the pentose phosphate pathway (PPP) correlated to cancer progression and drug resistance. We previously showed that G6PD inhibition leads to Endoplasmic Reticulum (ER) stress often associated to autophagy deregulation. The latter can be induced by target-based agents such as Lapatinib, an anti-HER2 tyrosine kinase inhibitor (TKI) largely used in breast cancer treatment. METHODS: Here we investigate whether G6PD inhibition causes autophagy alteration, which can potentiate Lapatinib effect on cancer cells. Immunofluorescence and flow cytometry for LC3B and lysosomes tracker were used to study autophagy in cells treated with lapatinib and/or G6PD inhibitors (polydatin). Immunoblots for LC3B and p62 were performed to confirm autophagy flux analyses together with puncta and colocalization studies. We generated a cell line overexpressing G6PD and performed synergism studies on cell growth inhibition induced by Lapatinib and Polydatin using the median effect by Chou-Talay. Synergism studies were additionally validated with apoptosis analysis by annexin V/PI staining in the presence or absence of autophagy blockers. RESULTS: We found that the inhibition of G6PD induced endoplasmic reticulum stress, which was responsible for the deregulation of autophagy flux. Indeed, G6PD blockade caused a consistent increase of autophagosomes formation independently from mTOR status. Cells engineered to overexpress G6PD became resilient to autophagy and resistant to lapatinib. On the other hand, G6PD inhibition synergistically increased lapatinib-induced cytotoxic effect on cancer cells, while autophagy blockade abolished this effect. Finally, in silico studies showed a significant correlation between G6PD expression and tumour relapse/resistance in patients. CONCLUSIONS: These results point out that autophagy and PPP are crucial players in TKI resistance, and highlight a peculiar vulnerability of breast cancer cells, where impairment of metabolic pathways and autophagy could be used to reinforce TKI efficacy in cancer treatment.


Antineoplastic Agents/pharmacology , Autophagy/drug effects , Breast Neoplasms/metabolism , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Autophagy/genetics , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Female , Gene Expression , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Humans , Lapatinib/pharmacology , Prognosis , Recurrence
...