Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(739): eabn8529, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507466

RESUMEN

Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.


Asunto(s)
Distrofia Muscular de Duchenne , Nicho de Células Madre , Ratones , Animales , Apelina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Transducción de Señal
2.
Biochem J ; 478(13): 2681-2696, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34156061

RESUMEN

Apoptosis is a regulated form of cell death essential to the removal of unwanted cells. At its core, a family of cysteine peptidases named caspases cleave key proteins allowing cell death to occur. To do so, each caspase catalytic pocket recognizes preferred amino acid sequences resulting in proteolysis, but some also use exosites to select and cleave important proteins efficaciously. Such exosites have been found in a few caspases, notably caspase-7 that has a lysine patch (K38KKK) that binds RNA, which acts as a bridge to RNA-binding proteins favoring proximity between the peptidase and its substrates resulting in swifter cleavage. Although caspase-7 interaction with RNA has been identified, in-depth characterization of this interaction is lacking. In this study, using in vitro cleavage assays, we determine that RNA concentration and length affect the cleavage of RNA-binding proteins. Additionally, using binding assays and RNA sequencing, we found that caspase-7 binds RNA molecules regardless of their type, sequence, or structure. Moreover, we demonstrate that the N-terminal peptide of caspase-7 reduces the affinity of the peptidase for RNA, which translates into slower cleavages of RNA-binding proteins. Finally, employing engineered heterodimers, we show that a caspase-7 dimer can use both exosites simultaneously to increase its affinity to RNA because a heterodimer with only one exosite has reduced affinity for RNA and cleavage efficacy. These findings shed light on a mechanism that furthers substrate recognition by caspases and provides potential insight into its regulation during apoptosis.


Asunto(s)
Apoptosis , Caspasa 7/metabolismo , Lisina/metabolismo , ARN/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/química , Caspasa 7/genética , Células HCT116 , Células HEK293 , Humanos , Immunoblotting , Lisina/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Unión Proteica , Multimerización de Proteína , Proteolisis , ARN/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
3.
Proc Natl Acad Sci U S A ; 116(43): 21521-21528, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31586028

RESUMEN

To achieve swift cell demise during apoptosis, caspases cleave essential proteins for cell survival and removal. In addition to the binding of preferred amino acid sequences to its substrate-binding pocket, caspase-7 also uses exosites to select specific substrates. 4 lysine residues (K38KKK) located in the N-terminal domain of caspase-7 form such an exosite and promote the rapid proteolysis of the poly(ADP-ribose) polymerase 1 (PARP-1), but the mechanism of recognition remains mostly unknown. In this study, we show that the overall positive charge of the exosite is the critical feature of this evolutionarily conserved binding site. Additionally, interaction with the caspase-7 exosite involves both the Zn3 and BRCT domains of PARP-1 and is mediated by RNA. Indeed, PARP-1 proteolysis efficacy is sensitive to RNase A and promoted by added RNA. Moreover, using affinity chromatography and gel shift assays, we demonstrate that caspase-7, but not caspase-3 or a caspase-7 with a mutated exosite, binds nucleic acids. Finally, we show that caspase-7 prefers RNA-binding proteins (RNA-BPs) as substrates compared to caspase-3 and that RNA enhances proteolysis by caspase-7 of many of these RNA-BPs. Thus, we have uncovered an unusual way by which caspase-7 selects and cleaves specific substrates.


Asunto(s)
Caspasa 7/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Secuencias de Aminoácidos , Animales , Caspasa 7/química , Caspasa 7/genética , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Unión Proteica , Dominios Proteicos , Proteolisis , ARN/genética , Proteínas de Unión al ARN/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...