Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 23(7): 1593-603, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22528073

RESUMEN

Calcium phosphate ceramics suspensions (ICPCS) are used in bone and dental surgery as injectable bone substitutes. This ICPCS biomaterial associates biphasic calcium phosphate (BCP) granules with hydroxypropylmethylcellulose (HPMC) polymer. Different ICPCS were prepared and their rheological properties were evaluated in parallel disks geometry as a function of the BCP weight ratio (35, 40, 45 and 50 %). The suspensions show a strongly increased viscosity as compared to the suspending fluid and the high shear rate part of the flow curve can be fitted with a power law model (Ostwald-de Waele model). The fitting parameters depend on the composition of the suspension. A simple device has been used to characterize extrusion of the paste using a disposable syringe fitted with a needle. The injection pressure of four ICPCS formulations was studied under various conditions (needle length and radius and volumetric flow rate), yielding an important set of data. A theoretical approach based on the capillary flow of non-Newtonian fluids was used to predict the necessary pressure for injection, on the basis of flow curves and extrusion conditions. The extrusion pressure calculated from rheological data shows a quantitative agreement with the experimental one for model fluids (Newtonian and HPMC solution) but also for the suspension, when needles with sufficiently large diameters as compared to the size of particles, are used. Depletion and possibly wall slip is encountered in the suspensions when narrower diameters are used, so that the injection pressure is less than that anticipated. However a constant proportionality factor exists between theory and injection experiments. The approach developed in this study can be used to correlate the rheological parameters to the necessary pressure for injection and defines the pertinent experimental conditions to obtain a quantitative agreement between theory and experiments.


Asunto(s)
Fosfatos de Calcio , Pomadas , Materiales Biocompatibles , Derivados de la Hipromelosa , Metilcelulosa/análogos & derivados , Microscopía Electrónica de Rastreo , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...