Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 359, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280240

RESUMEN

The global reach-scale "ICESat-2 River Surface Slope" (IRIS) dataset comprises average and extreme water surface slopes (WSS) derived from ICESat-2 observations between October 2018 and August 2022 as a supplement to 121,583 reaches from the "SWOT Mission River Database" (SWORD). To gain full advantage of ICESat-2's unique measurement geometry with six parallel lidar beams, the WSS is determined across pairs of beams or along individual beams, depending on the intersection angle of spacecraft orbit and river centerline. Combining both approaches maximizes spatial and temporal coverage. IRIS can be used to research river dynamics, estimate river discharge, and correct water level time series from satellite altimetry for shifting ground tracks. Additionally, by referencing SWORD as a common database, IRIS may be used in combination with observations from the recently launched SWOT mission.

2.
Nat Commun ; 12(1): 3812, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155219

RESUMEN

Coastal studies of wave climate and evaluations of wave energy resources are mainly regional and based on the use of computationally very expensive models or a network of in-situ data. Considering the significant wave height, satellite radar altimetry provides an established global and relatively long-term source, whose coastal data are nevertheless typically flagged as unreliable within 30 km of the coast. This study exploits the reprocessing of the radar altimetry signals with a dedicated fitting algorithm to retrieve several years of significant wave height records in the coastal zone. We show significant variations in annual cycle amplitudes and mean state in the last 30 km from the coastline compared to offshore, in areas that were up to now not observable with standard radar altimetry. Consequently, a decrease in the average wave energy flux is observed. Globally, we found that the mean significant wave height at 3 km off the coast is on average 22% smaller than offshore, the amplitude of the annual cycle is reduced on average by 14% and the mean energy flux loses 38% of its offshore value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...